
C H A P T E R 3

Binomial Distribution

3.1 DEFINITION

The binomial distribution can be defined, using the binomial expansion

(q + p)n =
n∑

x=0

(
n

k

)
pkqn−k =

n∑
x=0

n!

k!(n − k!)
pkqn−k,

as the distribution of a random variable X for which

Pr[X = x] =
(

n

x

)
pxqn−x, x = 0, 1, 2, . . . , n, (3.1)

where q + p = 1, p > 0, q > 0, and n is a positive integer. Occasionally a more
general form is used in which the variable X is transformed to a + bX, where
a and b are real numbers with b �= 0. When n = 1, the distribution is known as
the Bernoulli distribution.

The characteristic function (cf) of the binomial distribution is (1 − p + peit )n,
and the probability generating function (pgf) is

G(z) = (1 − p + pz)n = (q + pz)n

= 1F0[−n;−;−pz/q]

1F0[−n;−;−p/q]
(3.2)

= 1F0[−n;−;p(1 − z)], 0 < p < 1. (3.3)

The mean and variance are

µ = np and µ2 = npq. (3.4)

The distribution is a power series distribution (PSD) with finite support. From
(3.2) it is a generalized hypergeometric probability distribution (GHPD) and
from (3.3) it is a generalized hypergeometric factorial moment distribution. It is
a member of the exponential family of distributions (when n is known), and it
is an Ord and also a Katz distribution; for more details see Section 3.4.
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3.2 HISTORICAL REMARKS AND GENESIS

If n independent trials are made and in each there is probability p that the outcome
E will occur, then the number of trials in which E occurs can be represented
by a rv X having the binomial distribution with parameters n, p. This situation
occurs when a sample of fixed size n is taken from an infinite population where
each element in the population has an equal and independent probability p of
possession of a specified attribute. The situation also arises when a sample of
fixed size n is taken from a finite population where each element in the population
has an equal and independent probability p of having a specified attribute and
elements are sampled independently and sequentially with replacement.

The binomial distribution is one of the oldest to have been the subject of
study. The distribution was derived by James Bernoulli (in his treatise Ars Con-
jectandi, published in 1713), for the case p = r/(r + s), where r and s are
positive integers. Earlier Pascal had considered the case p = 1

2 . In his Essay,
published posthumously in 1764, Bayes removed the rational restriction on p

by considering the position relative to a randomly rolled ball of a second ball
randomly rolled n times. The early history of the distribution is discussed, inter
alia, by Boyer (1950), Stigler (1986), Edwards (1987), and Hald (1990).

A remarkable new derivation as the solution of the simple birth-and-emigration
process was given by McKendrick (1914). The distribution may also be regarded
as the stationary distribution for the Ehrenfest model (Feller, 1957). Haight (1957)
has shown that the M/M/1 queue with balking gives rise to the distribution,
provided that the arrival rate of the customers when there are n customers in the
queue is λ = (N − n)N−1(n + 1)−1 for n < N and zero for n ≥ N (N is the
maximum queue size).

3.3 MOMENTS

The moment generating function (mgf) is (q + pet)n and the cumulant generat-
ing function (cgf) is n ln(q + pet ). The factorial cumulant generating function
(fcgf) is n ln(1 + pt), whence κ[r] = n(r − 1)!pr . The factorial moments can be
obtained straightforwardly from the factorial moment generating function (fmgf),
which is (1 + pt)n. We have

µ′
[r] = n!pr

(n − r)!
;

that is,

µ′
[1] = µ = np,

µ′
[2] = n(n − 1)p2,

µ′
[3] = n(n − 1)(n − 2)p3,

...

(3.5)
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From µ′
r =∑r

j=0 S(r, j)µ′
[j ] (see Section 1.2.7), it follows that the rth moment

about zero is

µ′
r = E[Xr] =

r∑
j=0

S(r, j)n!pr

(n − r)!
. (3.6)

In particular

µ′
1 = np,

µ′
2 = np + n(n − 1)p2,

µ′
3 = np + 3n(n − 1)p2 + n(n − 1)(n − 2)p3,

µ′
4 = np + 7n(n − 1)p2 + 6n(n − 1)(n − 2)p3 + n(n − 1)(n − 2)(n − 3)p4.

Hence (or otherwise) the central moments can be obtained. The lower order
central moments are

µ2 = σ 2 = npq,

µ3 = npq(q − p),

µ4 = 3(npq)2 + npq(1 − 6pq).

(3.7)

The moment ratios
√

β1 and β2 are

√
β1 = (q − p)(npq)−1/2, β2 = 3 + (1 − 6pq)(npq)−1. (3.8)

For a fixed value of p (and so of q) the (β1, β2) points fall on the straight line

β2 − 3

β1
= 1 − 6pq

(q − p)2
= 1 − 2pq

(q − p)2
.

As n → ∞, the points approach the limit (0, 3).
Note that the same straight line is obtained when p is replaced by q. The two

distributions are mirror images of each other, so they have identical values of β2

and the same absolute value of
√

β1. The slope (β2 − 3)/β1 is always less than 1.
The limit of the ratio as p approaches 0 or 1 is 1. For p = q = 0.5 the binomial
distribution is symmetrical and β1 = 0. For n = 1, the point (β1, β2) lies on the
line β2 − β1 − 1 = 0. (Note that for any distribution β2 − β1 − 1 ≥ 0.)

Romanovsky (1923) derived the following recursion formula for the central
moments:

µr+1 = pq

(
nrµr−1 + dµr

dp

)
. (3.9)
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An analogous relation holds for moments about zero,

µ′
r+1 = pq

[(
n

q

)
µ′

r + dµ′
r

dp

]
. (3.10)

Kendall (1943) used differentiation of the cf to derive the relationship

µr = npq
r−2∑
j=0

(
r − 1

j

)
µj − p

r−2∑
j=0

(
r − 1

j

)
µj+1. (3.11)

A simpler recursion formula holds for the cumulants

κr+1 = pq
∂κr

∂p
, r ≥ 1. (3.12)

Formula (3.10) also holds for the incomplete moments, defined as

µ′
j,k =

n∑
i=k

ij
(

n

i

)
piqn−i .

The mean deviation is

ν1 = E[|X − np|] = 2n

(
n − 1

[np]

)
p[np]+1qn−[np], (3.13)

where [·] denotes the integer part [see Bertrand (1889), Frisch (1924), and Frame
(1945)]. Diaconis and Zarbell (1991) have discussed the provenance and import
of this formula and other equivalent formulas. They found that ν1 is an increasing
function of n but that ν1/n is a decreasing function of n. Johnson’s (1957) article
led to a number of generalizations. Using Stirling’s approximation for n!,

ν1 ≈
(

2npq

π

)1/2 [
1 + (np − [np])(nq − [nq])

2npq
− 1 − 2pq

12npq

]
; (3.14)

this shows that the ratio of the mean deviation to the standard deviation approaches
the limiting value (2/π)1/2 ≈ 0.798 as n → ∞.

Katti (1960) devised an ingenious method for obtaining the absolute moments
of general order about m. All inverse moments of the binomial distribution [i.e.,
E(X−r ) with r = 1, 2, . . .] are infinite because Pr[X = 0] > 0. Inverse moments
of the positive binomial distribution (formed by zero truncation) are discussed in
Section 3.11.

Direct manipulation of the definition of the inverse factorial moment, as in
Stancu (1968), yields

E[{(X + r)(r)}−1] = [(n + r)(r)]−1p−r


1 −

r−1∑
y=0

(
n + r

y

)
pyqn+r−y


 . (3.15)
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Chao and Strawderman (1972) obtained a general result for E[(X + a)−k] in
terms of a k-fold multiple integral of t−1E[tX+a−1], and they applied this to the
binomial distribution. A modification of their approach enabled Lepage (1978)
to express the inverse ascending factorial moment

Rx(a, k) = E[{(X + a) · · · (X + a + k − 1)}−1]

as a k-fold multiple integral of E[tX+a−1]. Cressie et al. (1981) obtained E[(X +
a)−k] both as a k-fold multiple integral of E[e−t (X+a)] and also from a single
integral of tk−1E[e−t (X+a)]. Jones (1987) developed an analogous single-integral
result for Rx(a, k), namely,

Rx(a, k) = [�(k)]−1
∫ 1

0
(1 − t)k−1E[tX+a−1] dt,

and compared the different (though equivalent) expressions that are yielded by
the different approaches for Rx(a, k) for the binomial distribution.

3.4 PROPERTIES

The binomial distribution belongs to a number of families of distributions and
hence possesses the properties of each of the families.

It is a distribution with finite support. As defined by (3.1), it consists of n + 1
nonzero probabilities associated with the values 0, 1, 2, . . . , n of the rv X. The
ratio

Pr[X = x + 1]

Pr[X = x]
= (n − x)p

(x + 1)q
, x = 0, 1, . . . , n − 1, (3.16)

shows that Pr[X = x] increases with x so long as x < np − q = (n + 1)p − 1
and decreases with x if x > np − q. The distribution is therefore unimodal with
the mode occurring at x = [(n + 1)p], where [·] denotes the integer part. If
(n + 1)p is an integer, then there are joint modes at x = np + p and x = np − q.
When p < (n + 1)−1, the mode occurs at the origin.

The median is given by the minimum value of k for which

k∑
j=0

(
n

k

)
pkqn−k > 1

2 .

Kaas and Buhrman (1980) showed that

|mean − median| ≤ max {p, 1 − p}.
Hamza (1995) has sharpened this to

|mean − median| < ln 2

when p < 1 − ln 2 or p > ln 2.
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The distribution is a member of the exponential family of distributions with
respect to p/(1 − p), since

Pr[X = x] = exp

[
x ln

(
p

1 − p

)
+ ln

(
n

x

)
+ n ln(1 − p)

]
.

Morris (1982, 1983) has shown that it is one of the six subclasses of the natural
exponential family for which the variance is at most a quadratic function of the
mean; he used this property to obtain unified results and to gain insight concerning
limit laws. Unlike the other five subclasses, however, it is not infinitely divisible
(no distribution with finite support can be infinitely divisible).

Because Pr[X = x] is of the form

b(x)θx

η(θ)
, θ > 0, x = 0, 1, . . . , n,

where θ = p/(1 − p) (Kosambi, 1949; Noack, 1950), the distribution belongs to
the important family of PSDs (see Section 2.2). Patil has investigated these in
depth [see, e.g., Patil (1986)]. He has shown that for the binomial distribution

θη(r+1)(θ)

η(r)(θ)
= µ − pr, (3.17)

where η(θ) =∑x b(x)θx . Integral expressions for the tail probabilities of PSDs
were obtained by Joshi (1974, 1975), who thereby demonstrated the duality
between the binomial distribution and the beta distribution of the second kind.
Indeed

n∑
x=r

(
n

x

)
pxqn−x = Ip(r, n − r + 1) = Pr

[
F ≤ ν2p

ν1q

]
, (3.18)

where F is a random variable that has an F distribution with parameters ν1 = 2r ,
ν2 = 2(n − r + 1); see Raiffa and Schlaifer (1961).

Berg (1974, 1983a) has explored the properties of the closely related family
of factorial series distributions with

Pr[X = x] = n(x)c(x)

x!h(n)
,

to which the binomial distribution can be seen to belong by taking c(x) = (p/q)x .
Expression (3.16) shows that the binomial distribution belongs to the discrete

Pearson system (Katz, 1945, 1965; Ord, 1967b). Tripathi and Gurland (1977)
have examined methods for selecting from those distributions having

Pr[X = x + 1]

Pr[X = x]
= A + Bx

C + Dx + Ex2

a particular member such as the binomial.
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Kemp (1968a,b) has shown that the binomial is a generalized hypergeometric
distribution with pgf

G(z) = 1F0[−n; ;pz/(p − 1)]

1F0[−n; ;p/(p − 1)]
.

Moreover, because the ratio of successive factorial moments is (n − r)p, the dis-
tribution is also a generalized hypergeometric factorial moment distribution with
pgf 1F0[−n; ;p(1 − z)] (Kemp, 1968a; Kemp and Kemp, 1974). Its member-
ship of those families enabled Kemp and Kemp to obtain differential equations
and associated difference equations for the pgf and various mgf’s, including the
generating functions for the incomplete and the absolute moments.

The binomial has an increasing failure rate (Barlow and Proschan, 1965). The
Mills ratio for a discrete distribution is defined as∑

j≥x

Pr[X = j ]/ Pr[X = x],

and therefore it is the reciprocal of the failure rate. Diaconis and Zarbell (1991)
showed that the Mills ratio for the binomial distribution satisfies

x

n
≤
∑n

j=x Pr[X = j ]

Pr[X = x]
≤ x(1 − p)

x − np
,

provided that x > np. The binomial distribution is also a monotone likelihood-
ratio distribution. The skewness of the distribution is positive if p < 0.5 and is
negative if p > 0.5. The distribution is symmetrical iff p = 0.5.

Denoting Pr[X ≤ c] by Ln,c(p), Uhlmann (1966) has shown that, for n ≥ 2,

Ln,c

(
c

n − 1

)
>

1

2
> Ln,c

(
c + 1

n + 1

)
for 0 ≤ c <

n − 1

2
,

Ln,c

(
c

n − 1

)
= 1

2
= Ln,c

(
c + 1

n + 1

)
for c = n − 1

2
,

Ln,c

(
c + 1

n + 1

)
>

1

2
> Ln,c

(
c

n − 1

)
for

n − 1

2
< c ≤ n.

(3.19)

The distribution of the standardized binomial variable

X′ = X − np√
npq

tends to the unit-normal distribution as n → ∞; that is, for any real numbers α,
β (with α < β)

lim
n→∞ Pr[α < X′ < β] = 1√

2π

∫ β

α

e−u2/2 du. (3.20)

This result is known as the De Moivre–Laplace theorem. It forms a starting point
for a number of approximations in the calculation of binomial probabilities; these
will be discussed in Section 3.6.
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In Section 3.1 we saw that the pgf of X is (q + pz)n. If X1, X2 are independent
rv’s having binomial distributions with parameters n1, p and n2, p, respec-
tively, then the pgf of X1 + X2 is (q + pz)n1(q + pz)n2 = (q + pt)n1+n2 . Hence
X1 + X2 has a binomial distribution with parameters n1 + n2, p. This property
is also apparent on interpreting X1 + X2 as the number of occurrences of an
outcome E having constant probability p in each of n1 + n2 independent trials.

The distribution of X1, conditional on X1 + X2 = k, is

Pr[X1 = x|k] =

(
n1

x

)
pxqn1−x

(
n2

k − x

)
pk−xqn2−k+x

(
n1 + n2

k

)
pkqn1+n2−k

=

(
n1

x

)(
n2

k − x

)
(

n1 + n2

k

) , (3.21)

where max(0, k − n2) ≤ x ≤ min(n1, k). This is a hypergeometric distribution;
see Chapter 6.

The distribution of the difference X1 − X2 is

Pr[X1 − X2 = x] =
∑
x1

(
n1

x1

)(
n2

x1 − x

)
p2x1−xqn1+n2−2x1+x, (3.22)

where the summation is between the limits max(0, x) ≤ x1 ≤ min(n1, n2 + x).
When p = q = 0.5,

Pr[X1 − X2 = x] =
(

n1 + n2

n2 + x

)
2−n1−n2 , −n2 ≤ x ≤ n1,

so that X1 − X2 has a binomial distribution of the more general form mentioned
in Section 3.1.

From the De Moivre–Laplace theorem and the independence of X1 and X2,
it follows that the distribution of the standardized difference

[X1 − X2 − p(n1 − n2)][pq(n1 + n2)]
−1/2

tends to the unit-normal distribution as n1 → ∞, n2 → ∞ (whatever the ratio
n1/n2). A similar result also holds when X1 and X2 have binomial distributions
with parameters n1, p1 and n2, p2 with p1 �= p2; however, the conditional distri-
bution of X1, given X1 + X2 = x, is no longer hypergeometric. Its distribution
has been studied by Stevens (1951) as well as by Hannan and Harkness (1963),
who developed asymptotic normal approximations.

Springer (1979) has examined the distribution of products of discrete indepen-
dent rv’s; he used as an illustration the product of two binomial variables with
parameters n1, p1 and n2, p2, where n1 = n2 = 2.
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3.5 ORDER STATISTICS

As is the case for most discrete distributions, order statistics based on observed
values of random variables with a common binomial distribution are not often
used. Mention may be made, however, of discussions of binomial order statistics
by Gupta (1965), Khatri (1962), and Siotani (1956); see also David (1981). Tables
of the cumulative distribution of the smallest and largest order statistic and of
the range [in random samples of sizes 1(1)20] are in Gupta (1960b), Siotani
and Ozawa (1948), and Gupta and Panchapakesan (1974). These tables can be
applied in selecting the largest binomial probability among a set of k, based on
k independent series of trials. This problem has been considered by Somerville
(1957) and by Sobel and Huyett (1957).

Gupta (1960b) and Gupta and Panchapakesan (1974) have tabulated the mean
and variance of the smallest and largest order statistic. Balakrishnan (1986) has
given general results for the moments of order statistics from discrete distribu-
tions, and he has discussed the use of his results in the case of the binomial
distribution.

3.6 APPROXIMATIONS, BOUNDS, AND TRANSFORMATIONS

3.6.1 Approximations

The binomial distribution is of such importance in applied probability and statis-
tics that it is frequently necessary to calculate probabilities based on this distri-
bution. Although the calculation of sums of the form

∑
x

(
n

x

)
pxqn−x

is straightforward, it can be tedious, especially when n and x are large and when
there are a large number of terms in the summation. It is not surprising that a
great deal of attention and ingenuity have been applied to constructing useful
approximations for sums of this kind.

The normal approximation to the binomial distribution (based on the De
Moivre–Laplace theorem)

Pr[α < (X − np)(npq)−1/2 < β] ≈ 1√
2π

∫ β

α

e−u2/2 du = �(β) − �(α)

(3.23)
has been mentioned in Section 3.4. This is a relatively crude approximation, but
it can be useful when n is large. Numerical comparisons have been published in
a number of textbooks (e.g., Hald, 1952).

A marked improvement is obtained by the use of a continuity correction. The
following normal approximation is used widely on account of its simplicity:
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Pr[X ≤ x] ≈ �

(
x + 0.5 − np

(npq)1/2

)
; (3.24)

its accuracy for various values of n and p was assessed by Raff (1956) and by
Peizer and Pratt (1968), who used the absolute and the relative error, respectively.
Various rules of thumb for its use have been recommended in various standard
textbooks. Two such rules of thumb are

1. use when np(1 − p) > 9 and
2. use when np > 9 for 0 < p ≤ 0.5 ≤ q.

Schader and Schmid (1989) carried out a numerical study of these two rules which
showed that, judged by the absolute error, rule 1 guarantees increased accuracy
at the cost of a larger minimum sample size. Their study also showed that for
both rules the value of p strongly influences the error. For fixed n the maximum
absolute error is minimized when p = q = 1

2 ; it is reasonable to expect this
since the normal distribution is symmetrical whereas the binomial distribution
is symmetrical only when p = 1

2 . The maximum value that the absolute error
can take (over all values of n and p) is 0.140(npq)−1/2; Schader and Schmid
showed that under rule 1 it decreases from 0.0212(npq)−1/2 to 0.0007(npq)−1/2

as p increases from 0.01 to 0.5.
Decker and Fitzgibbon (1991) have given a table of inequalities of the form

nc ≥ k, for different ranges of p and particular values of c and k, that yield
specified degrees of error when (3.24) is employed.

Approximation (3.24) can be improved still further by replacing α and β on
the right-hand side of (3.23) by

[α
√

npq + np] − 0.5 − np√
npq

and
[α

√
npq + np] + 0.5 − np√

npq
,

respectively, where [·] denotes the integer part. A very similar approximation
was given by Laplace (1820).

For individual binomial probabilities, the normal approximation with conti-
nuity correction gives

Pr[X = x] ≈ (2π)−1/2
∫ (x+0.5−np)/

√
(npq)

(x−0.5−np)/
√

(npq)

e−u2/2 du. (3.25)

A nearly equivalent approximation is

Pr[X = x] ≈ 1√
npq

1√
2π

exp

[
−1

2

(x − np)2

npq

]
; (3.26)

see Prohorov (1953) concerning its accuracy.
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Peizer and Pratt (1968) and Pratt (1968) developed a normal approximation
formula for

∑x
j=0

(
n

j

)
pjqn−j in which the argument of �(·) is

x + 2
3 − (n + 1

3

)
p[(

n + 1
6

)
pq
]1/2

× 1

δx

{
2

[(
x + 1

2

)
ln

(
x + 1

2

np

)
+
(

n − x − 1

2

)
ln

(
n − x − 1

2

nq

)]}1/2

(3.27)
where δx = (x + 1

2 − np
) /√

npq. This gives good results that are even better
when the multiplier x + 2

3 − (n + 1
3

)
p is increased by

1
50

[
(x + 1)−1q − (n − x)−1p + (n + 1)−1

(
q − 1

2

)]
.

With this adjustment, the error is less than 0.1% for min(x + 1, n − x) ≥ 2.
Cressie (1978) suggested a slightly simpler formula, but it is not as accurate

as Peizer and Pratt’s improved formula, and the gain in simplicity is slight.
Samiuddin and Mallick (1970) used the argument(

n − x − 1
2

) (
x + 1

2

)
n

[
ln

(
x + 1

2

np

)
− ln

(
n − x − 1

2

nq

)]
,

which has some points of similarity with Peizer and Pratt’s formula. This approx-
imation is considerably simpler but not as accurate.

Borges (1970) found that

Y = (pq)−1/6 (n + 1
3

)1/2
∫ y

p

[t (1 − t)]−1/3 dt, (3.28)

where y = (x + 1
6

) / (
n + 1

3

)
, is approximately unit normally distributed; tables

for the necessary beta integral are in Gebhardt (1971). This was compared
numerically with other approximations by Gebhardt (1969). Another normal
approximation is that of Ghosh (1980).

C. D. Kemp (1986) obtained an approximation for the modal probability based
on Stirling’s expansion (Section 1.1.2) for the factorials in the pmf,

Pr[X = m] ≈ e√
2π

( a

bc

)1/2

exp

[
n ln

(
a(1 − p)

c

)
+ m ln

(
cp

b(1 − p)

)
+ 1

12

(
1

a
− 1

b
− 1

c

)

− 1

360

(
1

a3
− 1

b3
− 1

c3

)
+ 1

1260

(
1

a5
− 1

b5
− 1

c5

)]
, (3.29)

where m is the mode, a = n + 1, b = m + 1, and c = n − m + 1. He reported
that it gives at least eight-figure accuracy.
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Littlewood (1969) made an exhaustive analysis of binomial sums. He obtained
complicated asymptotic formulas for ln[

∑n
j=x

(
n

j

)
pjqn−j ] with uniform bounds

of order O(n−3/2) for each of the ranges

n
(
p + q

24

)
≤ x ≤ n(1 − n−1/5p) and n(1 − n−1/5) ≤ x ≤ n

and also for
np ≤ x ≤ n

(
1 − 1

2q
)
.

A number of approximations to binomial probabilities are based on the equation

Pr[X ≥ x] =
n∑

j=x

(
n

j

)
pjqn−j

= B(x, n − x + 1)−1
∫ p

0
tx−1(1 − t)n−x dt

= Ip(x, n − x + 1) (3.30)

(this formula can be established by integration by parts). Approximation methods
can be applied either to the integral or to the incomplete beta function ratio
Ip(x, n − x + 1).

Bizley (1951) and Jowett (1963) pointed out that since there is an exact cor-
respondence between sums of binomial probabilities and probability integrals
for certain central F distributions (see Sections 3.4 and 3.8.3), approximations
developed for the one distribution are applicable to the other, provided that the
values of the parameters correspond appropriately.

The Camp–Paulson approximation (Johnson et al., 1995, Chapter 26) was
developed with reference to the F distribution. When applied to the binomial
distribution, it gives

Pr[X ≤ x] ≈ (2π)−1/2
∫ Y (3

√
Z)−1

−∞
e−u2/2 du, (3.31)

where

Y =
[
(n − x)p

(x + 1)q

]1/3 (
9 − 1

n − x

)
− 9 + 1

(x + 1)
,

Z =
[
(n − x)p

(x + 1)q

]1/3 ( 1

n − x

)
+ 1

(x + 1)
.

The maximum absolute error in this approximation cannot exceed 0.007(npq)−1/2.
A natural modification of the normal approximation that takes into account

asymmetry is to use a Gram–Charlier expansion with one term in addition to the
leading (normal) term. The maximum error is now 0.056(npq)−1/2. It varies with
n and p in much the same way as for the normal approximations but is usually
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substantially smaller (about 50%). The relative advantage, however, depends on
x as well as on n and p. For details, see Raff (1956).

If n → ∞ and p → 0 in such a way that np = θ remains finite and constant,
then Pr[X = x] → e−θ θx/x!; that is, the limiting form is the Poisson distribution
(see Chapter 4). This is the basis for the Poisson approximation to the binomial
distribution

Pr[X ≤ x] ≈ e−np

x∑
j=0

(np)j

j !
, (3.32)

which has been used widely in inspection sampling. The maximum error is prac-
tically independent of n and approaches zero as p approaches zero. Anderson
and Samuels (1967) showed that this gives an underestimate if x ≥ np and an
overestimate if x ≤ np/(1 + n−1). Thus the Poisson approximation tends to over-
estimate tail probabilities at both tails of the distribution. The absolute error
of approximation increases with x for 0 ≤ x ≤ (np + 0.5) − √

(np + 0.25) and
decreases with x for (np + 0.5) + √

(np + 0.25) ≤ x ≤ n.
Rules of thumb for the use of (3.32) that have been recommended by various

authors are summarized in Decker and Fitzgibbon (1991), together with their
own findings regarding levels of accuracy. For practical work they advise the
use of the normal approximation (3.24) when n0.31p ≥ 0.47; for n0.31p < 0.47
they advise using the Poisson approximation (3.32).

Simons and Johnson (1971) were able to use a result due to Vervaat (1969)
to show that, if n → ∞ and p → 0 with np = θ , then

∞∑
j=0

∣∣∣∣
(

n

j

)
pjqn−j − e−θ θj

j !

∣∣∣∣h(j) → 0 (3.33)

for any h(j) for which
∑∞

j=0 θj (j !)−1h(j) converges.
Ivchenko (1974) studied the ratio∑x

j=0

(
n

j

)
pjqn−j∑x

j=0[e−np(np)j /j !]
.

Hald (1967) and Steck (1973) constructed Poisson approximations to cumu-
lative binomial probabilities by seeking solutions in θ to the equation

x∑
j=0

(
n

j

)
pjqn−j =

x∑
j=0

e−θ θj

j !
.

Steck gave bounds for θ , while Hald obtained the approximation

θ ≈ (n − x/2)p

1 − p/2
.
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The accuracies of a number of Poisson approximations to the binomial distribu-
tion have been studied by Morice and Thionet (1969) and by Gebhardt (1969).
Gebhardt used as an index of accuracy the maximum absolute difference between
the approximate and the exact cdf’s. Romanowska (1978) has made similar com-
parisons using the sum of the absolute differences between approximate and exact
values.

The Poisson Gram–Charlier approximation for the cumulative distribution
function is

Pr[X ≤ x] ≈
x∑

j=0

[P(j, np) + 0.5(j − np) �P(j, np)], (3.34)

where P(j, np) = e−np(np)j /j ! and the forward-difference operator � operates
on j .

Kolmogorov’s approximation is

Pr[X ≤ x] ≈
x∑

j=0

[P(j, np) − 0.5np2 ∇2P(j, np)]. (3.35)

The next term is np3∇3P(j, np)/3. It is a form of Gram–Charlier type B
expansion. A detailed comparison of these two approximations is given in Dunin-
Barkovsky and Smirnov (1955).

Galambos (1973) gave an interesting generalized Poisson approximation theo-
rem. Let Sx(n) denote the sum of the

(
n
x

)
probabilities associated with different

sets of x among n events (E1, . . . , En). Then the conditions S1(n) → a and
S2(n) → a2/2 as n → ∞ are sufficient to ensure that the limiting distribution of
the number of events that have occurred is Poissonian with parameter a.

Molenaar (1970a) provided a systematic review of the whole field of approx-
imations among binomial, Poisson, and hypergeometric distributions. This is an
important source of detailed information on relative accuracies of various kinds
of approximation. For “quick work” his advice is to use

Pr[X ≤ x]

≈



�({4x + 3}1/2q1/2 − {4n − 4x − 1}1/2p1/2) for 0.05 < p < 0.93,

�({2x + 1}1/2q1/2 − 2{n − x}1/2p1/2) for p ≥ 0.93,

or

Pr[X ≤ x] ≈
x∑

j=0

e−λλj

j !
(3.36)

with λ = (2n − x)p/(2 − p) for p “small” (Molenaar suggests p ≤ 0.4 for n =
3, p ≤ 0.3 for n = 30, and p ≤ 0.2 for n = 300).
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Wetherill and Köllerström (1979) derived further interesting and useful inequal-
ities among binomial, Poisson, and hypergeometric probabilities, with special
reference to their use in the construction of acceptance sampling schemes.

3.6.2 Bounds

In the previous section we gave approximations to various binomial probabilities;
in this section we examine bounds. Generally approximations are closer to the
true values than bounds. Nevertheless, bounds provide one-sided approximations,
and they often give useful limits to the magnitude of an approximation error.

Feller (1945) showed that, if x ≥ (n + 1)p, then

Pr[X = x] ≤ Pr[X = m] exp

[
−p[x − (n + 1)p + 1/2]2

2(n + 1)pq

+ [m − (n + 1)p + 1
2

]2]
, (3.37)

where m is the integer defined by (n + 1)p − 1 < m ≤ (n + 1)p and(
n

m

)(
m + 1

n + 1

)m (
1 − m + 1

n + 1

)n−m

≤
(

n

m

)
pmqn−m

≤
(

n

m

)(m
n

)m (
1 − m

n

)n−m

. (3.38)

A number of formulas give bounds on the probability Pr[|X/n − p| ≥ c], where
c is some constant, that is, on the probability that the difference between the
relative frequency X/n and its expected value p will have an absolute value
greater than c; see Uspensky (1937), Lévy (1954), and Okamoto (1958). Kambo
and Kotz (1966) and Krafft (1969) discussed these, sharpened Okamoto’s bounds,
and obtained the following improvement on Lévy’s bound:

Pr[|X/n − p| ≥ c] <
√

2(c
√

n)−1 exp
(−2nc2 − 4

3nc4
)

(3.39)

if p, q ≥ max(4/n, 2c) and n > 2.
Both upper and lower bounds for Pr[X ≥ x] were obtained by Bahadur (1960).

Starting from the hypergeometric series representation

Pr[X ≥ x] =
(

n

x

)
pxqn−x × q 2F 1[n + 1, 1; x + 1;p],

he obtained

q(x + 1)

x + 1 − (n + 1)p

(
1 + npq

(x − np)2

)−1

≤ Pr[X ≥ x](
n

x

)
pxqn−x

≤ q(x + 1)

x + 1 − (n + 1)p
.

(3.40)



APPROXIMATIONS, BOUNDS, AND TRANSFORMATIONS 123

Slud (1977) developed further inequalities starting with the inequalities

∞∑
j=x+1

e−np(np)j

j !
≤ Pr[X ≥ x + 1] for x ≤ n2p

n + 1
,

(3.41)
∞∑

j=x

e−np(np)j

j !
≥ max

[
Pr[X ≥ x], 1 − �

(
x − np√

(npq)

)]
for x ≥ (np + 1),

(3.42)
and

Pr[X ≥ x] ≥
∞∑

j=x

e−np(np)j

j !
≥ 1 − �

(
x − np√

(npq)

)
for x ≤ np. (3.43)

The second inequality in (3.43) is valid for all x.
Prohorov (1953) quoted the following upper bound on the total error for the

Poisson approximation to the binomial:

∞∑
j=0

∣∣∣∣
(

n

j

)
pjqn−j − e−np(np)j

j !

∣∣∣∣ ≤ min{2np2, 3p} (3.44)

[see Sheu (1984) for a relatively simple proof]. Guzman’s (1985) numerical
studies suggest that in practice this bound is rather conservative.

We note the following inequalities for the ratio of a binomial to a Poisson
probability when the two distributions have the same expected value:

enp
(

1 − x

n

)x
(1 − p)n ≤

(
n

x

)
pxqn−x

e−np(np)x/x!
≤ enp(1 − p)n−x . (3.45)

Neuman’s (1966) inequality is

Pr[X ≤ np] >
1

2
+ 1 + q

3
√

2π
(npq)−1/2

− 3q2 + 12q + 5

48
(npq)−1 − 1 + q

36
√

2π
(npq)−3/2. (3.46)

3.6.3 Transformations

Methods of transforming data to satisfy the requirements of the normal linear
model generally seek to stabilize the variance, or to normalize the errors, or to
remove interactions in order to make effects additive. Transformations are often
used in the hope that they will at least partially fulfill more than one objective.
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A widely used variance stabilization transformation for the binomial distribu-
tion is

u(X/n) = arcsin

√
X

n
. (3.47)

Anscombe (1948) showed that replacing X/n by
(
X + 3

8

) / (
n + 3

4

)
gives better

variance stabilization; moreover, it produces a rv that is approximately normally
distributed with expected value arcsin(

√
p) and variance 1/(4n). Freeman and

Tukey (1950) suggested the transformation

u

(
X

n

)
= arcsin

√
X

n + 1
+ arcsin

√
X + 1

n + 1
; (3.48)

this leads to the same approximately normal distribution. Tables for applying this
transformation were provided by Mosteller and Youtz (1961). For p close to 0.5,
Bartlett (1947) suggested the transformation

u

(
X

n

)
= ln

(
X

n − X

)
. (3.49)

3.7 COMPUTATION, TABLES, AND COMPUTER GENERATION

3.7.1 Computation and Tables

Recursive computation of binomial probabilities is straightforward. Since

Pr[X = n] ≷ Pr[X = 0] according as p ≷ 0.5,

forward recursion from Pr[X = 0] using

Pr[X = x + 1] = (n − x)p

(x + 1)q
Pr[X = x]

is generally recommended for p ≤ 0.5, and backward recursion from Pr[X = n]
using

Pr[X = x − 1] = xq

(n − x + 1)p
Pr[X = x]

for p > 0.5. Partial summation of the probabilities then gives the tail probabil-
ities. When all the individual probabilities are required, computation with low
overall rounding errors will result when an assumed value is taken for Pr[X = x0]
and both forward and backward recursion from x0 are used; the resultant values
must then be divided by their sum in order to give the true probabilities. Either
the integer part of n/2 or an integer close to the mode of the distribution would
be a sensible choice for x0.
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If only some of the probabilities are required, then recursion from the mode
can be achieved using C. D. Kemp’s (1986) very accurate approximation for the
modal probability that was given in the previous section. This is the basis of his
method for the computer generation of binomial rv’s.

There are a number of tables giving values of individual probabilities and sums
of these probabilities. Tables of the incomplete beta function ratio (Pearson, 1934)
contain values to eight decimal places of

Pr[X ≥ k] = Ip(k, n − k + 1)

for p = 0.01(0.01)0.99 and max(k, n − k + 1) ≤ 50. Other tables are as follows:

Biometrika Tables for Statisticians (Pearson and Hartley, 1976)
Tables of the Binomial Probability Distribution (National Bureau of Standards,

1950)
Binomial Tables [Romig, 1953 (this supplements the tables of the National

Bureau of Standards)].

Details concerning these and some other tables of binomial probabilities were
given in the first edition of this book.

A method for computing Pr[X ≥ x] (the binomial survival function) was
devised by Bowerman and Scheuer (1990). It was designed to avoid underflow
and overflow problems and is especially suitable for large n.

Stuart (1963) gave tables from which values of [pq(n−1
1 + n−1

2 )]1/2 can be
obtained to four decimal places (this is the standard deviation of the difference
between two independent binomial proportions with common parameter p).

Nomographs for calculating sums of binomial probabilities have been devel-
oped [see, e.g., Larson (1966)]. Such nomographs have also been constructed
and labeled for the equivalent problem of calculating values of the incomplete
beta function ratio (Hartley and Fitch, 1951).

3.7.2 Computer Generation

If large numbers of rv’s are required from a binomial distribution with constant
parameters, then the ease of computation of its probabilities coupled with the
bounded support for the distribution makes nonspecific methods very attractive.

However, when successive calls to the generator are for random binomial vari-
ates with changing parameters, distribution-specific methods become important.
A slow but very simple method is to simulate the flip of a biased coin n times and
count the number of successes. When p = 0.5, it suffices to count the number
of 1’s in a random uniformly distributed computer word of n bits. For p �= 0.5,
the method requires n uniforms per generated binomial variate, making it very
slow (recycling uniform random numbers in order to reduce the number required
is not generally recommended). An ingenious improvement (the beta, or median,
method) was devised by Relles (1972); see also Ahrens and Dieter (1974).

Devroye (1986) gives two interesting waiting-time methods based on the fol-
lowing features of the binomial distribution: First, let G1,G2, . . . be iid geometric
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rv’s with parameter p, and let X be the smallest integer such that
∑X+1

i=1 Gi > n;
then X is binomial with parameters n, p. Second, let E1, E2, . . . be iid exponential
rv’s, and let X be the smallest integer such that

X+1∑
i=1

ei

n − i + 1
> − ln(1 − p);

then X is binomial with parameters n, p. Both methods can be decidedly slow
because of their requirement for very many uniform random numbers; however,
as for the coin-flip method, their computer programs are very short.

The C. D. Kemp (1986) algorithm, based on inversion of the cdf by unstored
search from the mode, competes favorably with the Ahrens and Dieter (1974)
algorithm. Other unstored search programs are discussed in Kemp’s paper.

Acceptance–rejection using a Poisson envelope was proposed by Fishman
(1979). Kachitvichyanukul and Schmeiser’s (1988) algorithm BTPE is a very
fast, intricate composition–acceptance–rejection algorithm. Stadlober’s (1991)
algorithm is simpler, but not quite so fast; it uses the ratio of two uniforms.

3.8 ESTIMATION

3.8.1 Model Selection

The use of binomial probability paper in exploratory data analysis is described by
Hoaglin and Tukey (1985). Binomially distributed data should produce a straight
line with slope and intercept that can be interpreted in terms of estimates of the
parameters.

Other graphical methods include the following:

1. a plot of the ratio of sample factorial cumulants κ̃[r+1]/κ̃[r] against succes-
sive low values of r (Hinz and Gurland, 1967; see also Douglas, 1980);

2. a plot of xfx/fx−1 against successive low values of x, where fx is the
observed frequency of x (Ord, 1967a), see Table 2.2; and

3. marking the position of (κ̃3/κ̃2, κ̃2/κ̃1) on Ord’s (1970) diagram of distri-
butions, where κ̃1, κ̃2, and κ̃3 are the first three sample cumulants.

Further graphical methods have been developed by Gart (1970) and Grimm
(1970).

3.8.2 Point Estimation

Usually n is known. The method of moments, maximum likelihood, and mini-
mum χ2 estimators of p are then all equal to x/n. This estimator is unbiased.
Given k samples of size n, its variance is pq/nk, which is the Cramer–Rao
lower bound for unbiased estimators of p; the estimator is in fact the minimum
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variance unbiased estimator (MVUE) of p. Its expected absolute error has been
investigated by Blyth (1980).

An approximately median-unbiased estimator of p is

x + 1
6

n + 1
3

(Crow, 1975; see also Birnbaum, 1964). A helpful expository account of estima-
tion for p (including Bayesian estimation) is in Chew (1971). A useful summary
of results is in Patel, Kapardia, and Owen (1976).

Estimation of certain functions of p (when n is known) has also been investi-
gated. Sometimes an estimate of Pr[α < X < β] is required. The MVUE of this
polynomial function of p is

∑
α<ξ<β

(
n

ξ

)(
n(N − 1)

T − ξ

)/(
nN

T

)

where N is the number of observations, T =∑N
j=1 xj , and ξ takes integer values.

From this expression it can be seen that the MVUE of a probability Pr[X ∈ ω],
where ω is any subset of the integers {0, 1, . . . , n}, has the same form with the
range of summation α < ξ < β replaced by ξ ∈ ω. Rutemiller (1967) studied
the estimator of Pr[X = 0] in some detail, giving tables of its bias and variance.
Pulskamp (1990) showed that the MVUE of Pr[X = x] is admissible under
quadratic loss when x = 0 or n, but is inadmissible otherwise. He conjectured
that the maximum likelihood estimator (MLE) is always admissible.

Another function of p for which estimators have been constructed is min(p,

1 − p). A natural estimator to use, given a single observed value x, is min(x/n,

1 − x/n). The moments of this statistic have been studied by Greenwood and
Glasgow (1950) and the cumulative distribution by Sandelius (1952).

Cook, Kerridge, and Pryce (1974) have shown that, given a single observation
x, ψ(x) − ψ(n) is a useful estimator of ln(p); they also showed that

∣∣E[ψ(x) − ψ(n)] − ln(p)
∣∣ < qn+1p

n + 1
,

where ψ(y) is the derivative of ln �(y) (i.e., the psi function of Section 1.1.2).
They also obtained an “almost unbiased” estimator of the entropy p ln(p) and
used the estimator to construct an estimator of the entropy for a multinomial
distribution.

Unbiased sequential estimation of 1/p has been studied by Gupta (1967),
Sinha and Sinha (1975), and Sinha and Bose (1985). DeRouen and Mitchell
(1974) constructed minimax estimators for linear functions of p1, p2, . . . , pr

corresponding to r different (independent) binomial variables.
Suppose now that X1, X2, . . . , Xk are independent binomial rv’s and that

Xj has parameters nj , p, where j = 1, 2, . . . , k. Then, given a sample of k
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observations x1, . . . , xk , comprising one from each of the k distributions, the
maximum–likelihood estimator of p is the overall relative frequency

p̂ =
∑k

j=1 xj∑k
j=1 nj

. (3.50)

Moreover
∑k

j=1 xj is a sufficient statistic for p. Indeed, since
∑k

j=1 Xj has a

binomial distribution with parameters
∑k

j=1 nj , p, the analysis is the same as
for a single binomial distribution.

The above discussion assumes that n1, n2, . . . , nk (or at least
∑k

j=1 nj ) are
known. The problem of estimating the values of the nj ’s was studied by Student
(1919), Fisher (1941), Hoel (1947), and Binet (1953); for further historical details
see Olkin, Petkau, and Zidek (1981).

Given a single observation of a rv X having a binomial distribution with
parameters n, p, then, if p is known, a natural estimator for n is x/p. This is
unbiased and has variance nq/p.

The equation for the MLE n̂ of n when p is known is

R−1∑
j=0

Aj(n̂ − j)−1 = −N ln(1 − p); (3.51)

Aj is the number of observations that exceed j and R = max(x1, . . . , xN) (Hal-
dane, 1941). When N is large,

√
N Var(n̂) ≈


 n∑

j=1


Pr[X = j ]

j−1∑
i=0

(n − i)−2






−1

. (3.52)

The consistency of this estimator was studied by Feldman and Fox (1968).
Dahiya (1981) has constructed a simple graphical method for obtaining the

maximum-likelihood estimate of n, incorporating the integer restriction on n. In
Dahiya (1986) he examined the estimation of m (an integer) when p = θm and
θ is a known constant.

Suppose now that X1, X2, . . . , Xk are independent rv’s all having the same
binomial distribution with parameters n, p. Then equating the observed and
expected first and second moments gives the moment estimators ñ and p̃ of n

and p as the solutions of x = ñp̃ and s2 = ñp̃q̃. Hence

p̃ = 1 − s2

x
(3.53)

ñ = x

p̃
. (3.54)

Note that, if x < s2, then ñ is negative, suggesting that a binomial distribution
is an inappropriate model.
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Continuing to ignore the limitation that n must be an integer, the MLEs n̂, p̂

of n, and p satisfy the equations

n̂p̂ = x, (3.55)

R−1∑
j=0

Aj(n̂ − j)−1 = −N ln

(
1 − x

n̂

)
; (3.56)

Aj is the number of observations that exceed j and R = max(x1, . . . , XN).
The similarity between (3.54) and (3.55) arises because the binomial distribu-
tion is a PSD; see Section 2.2. Unlike the method-of-moments equations, the
maximum-likelihood equations require iteration for their solution. DeRiggi (1983)
has proved that a maximum-likelihood solution exists iff the sample variance is
less than x and that, if a solution exists, it is unique.

If N is large,

Var(n̂) ≈ n

N


 n∑

j=2

(
p

q

)j
(j − 1)!(N − j)!

j (N − 1)!




−1

, (3.57)

and the asymptotic efficiency of ñ, relative to n̂, is


1 + 2

n−1∑
j=1

(
p

q

)i
j !(N − j − 1)!

(j + 1)(N − 2)!




−1

(3.58)

(Fisher, 1941).
Olkin, Petkau, and Zidek (1981) found theoretically and through a Monte Carlo

study that, when both n and p are to be estimated, the method of moments and
maximum-likelihood estimation both give rise to estimators that can be highly
unstable; they suggested more stable alternatives based on (1) ridge stabilization
and (2) jackknife stabilization. Blumenthal and Dahiya (1981) also recognized
the instability of the MLE of n, both when p is unknown and when p is known;
they too gave an alternative stabilized version of maximum-likelihood estimation.

In Carroll and Lombard’s (1985) study of the estimation of population sizes for
impala and waterbuck, these authors stabilized maximum-likelihood estimation
of n by integrating out the nuisance parameter p using a beta distribution with
parameters a and b. The need for a stabilized estimator of n has been discussed
by Casella (1986).

The idea of minimizing the likelihood as a function of n, with p integrated out,
can be interpreted in a Bayesian context. For a helpful description of the principles
underlying Bayesian estimation for certain discrete distributions, including the
binomial, see Irony (1992). Geisser (1984) has discussed and contrasted ways of
choosing a prior distribution for binomial trials.
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An early Bayesian treatment of the problem of estimating n is that of Draper
and Guttman (1971). For p known they chose as a suitable prior distribution for
n the rectangular distribution with pmf 1/k, 1 ≤ n ≤ k, k some large preselected
integer. For p unknown, they again used a rectangular prior for n and, like Carroll
and Lombard, adopted a beta prior for p, thus obtaining a marginal distribution
for n of the form

p(n|x1, . . . , xN) ∝ (Nn − T + b − 1)!

(Nn + a + b − 1)!

N∏
j=1

n!

(n − xj )!
,

where max(xi) ≤ n ≤ k, T =∑N
j=1 xi . Although this does not lead to tractable

analytical results, numerical results are straightforward to obtain. Kahn (1987)
has considered the tailweight of the marginal distribution for n after integrating
out p when n is large; he has shown that the tailweight is determined solely
by the prior density on n and p. This led him to recommend caution when
adopting specific prior distributions. Hamedani and Walter (1990) have reviewed
both Bayesian and non-Bayesian approaches to the estimation of n.

Empirical Bayes methods have been created by Walter and Hamedani (1987)
for unknown p and by Hamedani and Walter (1990) for unknown n. In their
1990 paper they used an inversion formula and Poisson–Charlier polynomials
to estimate the prior distribution of n; this can then be smoothed if it is thought
necessary. Their methods are analogous to the Bayes–empirical Bayes approach
of Deely and Lindley (1981). Barry (1990) has developed empirical Bayes meth-
ods, with smoothing, for the simultaneous estimation of the parameters pi for
many binomials in both one-way and two-way layouts.

Serbinowska (1996) has considered estimation of the number of changes in
the parameter p in a stream of binomial observations.

Research concerning the estimation of the parameter n when p is known has
been reviewed and extended by Zou and Wan (2003). Casella and Strawderman
(1994) have investigated the simultaneous estimation of n1, n2, . . . for several
binomial samples.

Kyriakoussis and Papadopoulos (1993) deal with the Bayesian estimation of
p for the zero-truncated binomial distribution.

3.8.3 Confidence Intervals

The binomial distribution is a discrete distribution, and so it is not generally pos-
sible to construct a confidence interval for p with an exactly specified confidence
coefficient using only a set of observations.

Let x1, x2, . . . , xN be values of independent random binomial variables with
exponent parameters n1, n2, . . . , nN and common second parameter p. Then
approximate 100(1 − α)% limits may be obtained by solving the following
equations for pL and pU :

n∑
j=T

(
n

j

)
(pL)j (1 − pL)n−j = α

2
, (3.59)


