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Negative Binomial Distribution

5.1 DEFINITION

Many different models give rise to the negative binomial distribution, and conse-
quently there is a variety of definitions in the literature. The two main dichotomies
are (a) between parameterizations and (b) between points of support.

Formally, the negative binomial distribution can be defined in terms of the expan-
sion of the negative binomial expression (Q − P)−k , where Q = 1 + P , P > 0,
and k is positive real; the (x + 1)th term in the expansion yields Pr[X = x]. This
is analogous to the definition of the binomial distribution in terms of the binomial
expression (π + ω)n, where ω = 1 − π , 0 < π < 1, and n is a positive integer.

Thus the negative binomial distribution with parameters k, P is the distribution
of the rv X for which

Pr[X = x] =
(

k + x − 1
k − 1

)(
P

Q

)x (
1 − P

Q

)k

, x = 0, 1, 2, . . . , (5.1)

where Q = 1 + P , P > 0, and k > 0. Unlike the binomial distribution, here there
is a nonzero probability for X to take any specified nonnegative integer value,
as in the case of the Poisson distribution.

The probability generating function (pgf) is

G(z) = (1 + P − Pz)−k (5.2)

= 1F0[k; ;P(z − 1)] (5.3)

= 1F0[k; ;Pz/(1 + P)]

1F0[k; ;P/(1 + P)]
(5.4)

and the characteristic function is (1 + P − Peit )−k . The mean and variance are

µ = kP and µ2 = kP (1 + P). (5.5)
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This parameterization (but with the symbol p instead of P ) is the one introduced
by Fisher (1941).

Other early writers adopted different parameterizations. Jeffreys (1941) had
b = P/(1 + P), ρ = kP , giving the pgf [(1 − bz)/(1 − b)]ρ−ρ/b , and µ = ρ,

µ2 = ρ/(1 − b). Anscombe (1950) used the form α = k, λ = kP , giving the pgf
(1 + λ/α − λz/α)−α , and µ = λ, µ2 = λ(1 + λ/α).

Evans (1953) took a = P , m = kP , giving the pgf (1 + a − az)−m/a , and
µ = m, µ2 = m(1 + a). This parameterization has been popular in the ecolog-
ical literature. Some writers, for instance Patil et al. (1984), called this the
Pólya–Eggenberger distribution, as it arises as a limiting form of Eggenberger
and Pólya’s (1923) urn model distribution. Other authors, notably Johnson and
Kotz (1977) and Berg (1988b), called the (nonlimiting) urn model distribution
the Pólya–Eggenberger distribution; see Section 6.2.4. For both distributions
“Pólya–Eggenberger” is quite often abbreviated to “Pólya.”

A further parameterization that has gained wide favor is p = 1/(1 + P), that
is, q = P/(1 + P), and k = k, giving

G(z) =
(

1 − q

1 − qz

)k

, (5.6)

Pr[X = x] =
(

k + x − 1

k − 1

)
qx(1 − q)k, x = 0, 1, 2, . . . , (5.7)

and µ = kq/(1 − q), µ2 = kq/(1 − q)2. Sometimes λ = P/(1 + P) is used to
avoid confusion with the binomial parameter q.

Clearly k need not be an integer. When k is an integer, the distribution is
sometimes called the Pascal distribution (Pascal, 1679). The name “Pascal dis-
tribution” is, however, more often applied to the distribution shifted k units from
the origin, that is, with support k, k + 1, . . .; this is also called the binomial
waiting-time distribution.

The geometric is the special case k = 1 of the negative binomial distribution.
Kemp (1967a) summarized four commonly encountered formulations of pgf’s

for the negative binomial and geometric distributions as follows:

Formulation Negative Binomial Geometric Conditions

1

2

pk(1 − qz)−k

pkzk(1 − qz)−k

p(1 − qz)−1

pz(1 − qz)−1

}


p + q = 1

0 < p < 1

3

4

(Q − Pz)−k

zk(Q − Pz)−k

(Q − Pz)−1

z(Q − Pz)−1

}


Q = 1 + P, P > 0

(Q = 1/p, P = q/p,

i.e., p = 1/Q, q = P/Q)

In cases 1 and 3, k is positive real, the support is 0, 1, 2, . . . , and the distri-
bution is a power series distribution (PSD). For cases 2 and 4, k is necessarily a
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positive integer; the distribution has support k, k + 1, k + 2, . . . , and the distri-
bution is a generalized power series distribution (GPSD) (see Section 2.1).

Case 1 shows that the distribution is a generalized hypergeometric probability
distribution [with argument parameter q; cf. (5.4)], while case 3 shows that it
is a generalized hypergeometric factorial moment distribution [with argument
parameter P ; cf. (5.3)]. Other families to which the negative binomial belongs
are the exponential (provided k is fixed), Katz, Willmot, and Ord families.

5.2 GEOMETRIC DISTRIBUTION

In the special case k = 1 the pmf is

Pr[X = j ] = Q−1
(

P

Q

)j

= pqj , j = 0, 1, 2, . . . . (5.8)

These values are in geometric progression, so this distribution is called a geo-
metric distribution; sometimes it is called a Furry distribution (Furry, 1937).

Its properties can be obtained from those of the negative binomial as the
special case k = 1.

The geometric distribution possesses a property similar to the “nonaging”
(or “Markovian”) property of the exponential distribution (Johnson et al. 1995,
Chapter 18). This is

Pr[X = x + j |X ≥ j ] = Q−1(P/Q)x+j

(P/Q)j
= Q−1

(
P

Q

)x

= Pr[X = x]. (5.9)

This property characterizes the geometric distribution (among all distributions
restricted to the nonnegative integers), just as the corresponding property char-
acterizes the exponential distribution. The distribution is commonly said to be a
discrete analog of the exponential distribution. It is a special case of the grouped
exponential distribution; see Spinelli (2001).

The geometric distribution may be extended to cover the case of a variable
taking values θ0, θ0 + δ, θ0 + 2δ, . . . (δ > 0). Then, in place of (5.8), we have

Pr[X = θ0 + jδ] = Q−1
(

P

Q

)j

. (5.10)

The characterization summarized in (5.9) also applies to this distribution with X

replaced by θ0 + Xδ and j replaced by θ0 + jδ.
Other characterizations are described in Section 5.9.1.
Another special property of the geometric distribution is that, if a mixture of

negative binomial distributions [as in (5.1)] is formed by supposing k to have
the geometric distribution

Pr[k = j ] = (Q′)−1
(

P ′

Q′

)j−1

, j = 1, 2, . . . , (5.11)
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then the resultant mixture distribution is also a geometric distribution of the form
(5.8) with Q replaced by QQ′ − P ′.

The geometric, like the negative binomial distribution, is infinitely divisible;
see Section 1.2.10 for a definition of infinite divisibility.

The Shannon entropy (first-order entropy) of the geometric distribution is
P log2 P − Q log2 Q. The second-order entropy is log2(1 + 2P).

Margolin and Winokur (1967) obtained formulas for the moments of the order
statistics for the geometric distribution and tabulated values of the mean and
variance to two decimal places; see also Kabe (1969). Steutel and Thiemann’s
(1989a) expressions for the order statistics were derived using the independence
of the integer and fractional parts of exponentially distributed rv’s. The compu-
tation of the order statistics from the geometric distribution has also been studied
by Adatia (1991). Adatia also obtained an explicit formula for the expected value
of the product of two such order statistics.

Order statistics from a continuous distribution form a Markov chain, but this is
not in general true for discrete distributions. At first it was thought that exception-
ally the Markov property holds for the geometric distribution (Gupta and Gupta,
1981); later this was disproved by Nagaraja (1982) and Arnold et al. (1984).
Nagaraja’s (1990) lucid survey article on order statistics from discrete distri-
butions documents a number of characterizations of the geometric distribution
based on its order statistics; see Section 5.9.1.

Estimation of the parameter of the geometric distribution is particularly
straightforward. Because it is a PSD, the first-moment equation is also the
maximum-likelihood equation. Hence

P̂ = x. (5.12)

A moment-type estimator for the geometric distribution with either or both tails
truncated was obtained by Kapadia and Thomasson (1975), who compared its
efficiency with that of the maximum-likelihood estimator (MLE). Estimation for
the geometric distribution with unknown P and unknown location parameter
was studied by Klotz (1970) (maximum-likelihood estimation), Iwase (1986)
(minimum-variance unbiased estimation), and Yanagimoto (1988) (conditional
maximum-likelihood estimation). Vit (1974) examined tests for homogeneity.

If X1,X2, . . . , Xk are rv’s each with the geometric distribution with pmf

Pr[X = x] = Q−1
(

P

Q

)x

, x = 0, 1, 2, . . . ,

then
∑k

i=1 Xi is a negative binomial variable with parameters k and P ; see
Section 5.5. Using this fact, Clemans (1959) constructed charts from which con-
fidence intervals for P , given k−1 ∑k

i=1 xi , can be read off.
Applications of the geometric distribution include runs of one plant species

with respect to another in transects through plant populations (Pielou, 1962,
1963), a ticket control problem (Jagers, 1973), a surveillance system for
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congenital malformations (Chen, 1978), and estimation of animal abundance
(Seber, 1982b). Mann et al. (1974) looked at applications in reliability theory.

The distribution is used in Markov chain models, for example, in meteorolog-
ical models of weather cycles and precipitation amounts (Gabriel and Neumann,
1962). Many other applications in queueing theory and applied stochastic mod-
els were discussed by Taylor and Karlin (1998) and Bhat (2002). Daniels (1961)
investigated the representation of a discrete distribution as a mixture of geometric
distributions and applied this to busy-period distributions in equilibrium queue-
ing systems. Sandland (1974) put forward a building-society-membership scheme
and a length-of-tenure scheme as models for the truncated geometric distribution
with support 0, 1, . . . , n − 1.

5.3 HISTORICAL REMARKS AND GENESIS OF NEGATIVE
BINOMIAL DISTRIBUTION

Special forms of the negative binomial distribution were discussed by Pascal
(1679). A derivation as the distribution of the number of tosses of a coin neces-
sary to achieve a fixed number of heads was published by Montmort (1713) in
his solution of the problem of points; see Todhunter (1865, p. 97). A very clear
interpretation of the pmf as a density function was given by Galloway (1839,
pp. 37–38) in his discussion of the problem of points. Let X be the rv repre-
senting the number of independent trials necessary to obtain k occurrences of an
event that has a constant probability of occurring at each trial. Then

Pr[X = k + j ] =
(

k + j − 1

k − 1

)
pk(1 − p)j , j = 1, 2, . . . ; (5.13)

that is, X has a negative binomial distribution (case 2 in Kemp’s list in the
previous section).

Meyer (1879, p. 204) obtained the pmf as the probability of exactly j male
births in a birth sequence containing a fixed number of female births; he assumed
a known constant probability of a male birth. He also gave the cdf in a form
that we now recognize as the upper tail of an F distribution (equivalent to an
incomplete beta function; see Section 5.6).

Student (1907) found empirically that certain hemocytometer data could be
fitted well by a negative binomial distribution. Whittaker (1914) continued this
approach. Unfortunately she did not realize that the Poisson distribution is a
limiting form for both the binomial and the negative binomial distributions (see
Section 5.12.1), and she aroused considerable controversy concerning the relative
merits of the Poisson and the negative binomial distributions.

Greenwood and Yule (1920) derived the following relationship between the
Poisson and negative binomial distributions. Suppose that we have a mixture of
Poisson distributions such that the expected values θ of the Poisson distributions
vary according to a gamma distribution with pdf

f (θ) = [βα	(α)]−1θα−1 exp

(
− θ

β

)
, θ > 0, α > 0, β > 0.
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Then

Pr[X = x] = [βα	(α)]−1
∫ ∞

0
θα−1e−θ/β(θxe−θ /x!) dθ

=
(

α + x − 1

α − 1

)(
β

β + 1

)x ( 1

β + 1

)α

. (5.14)

So X has a negative binomial distribution with parameters α and β. This type of
model was used to represent “accident proneness” by Greenwood and Yule. The
parameter θ represents the expected number of accidents for an individual. This
is assumed to vary from individual to individual.

Another important derivation is that of Lüders (1934); see also Quenouille
(1949). Here the negative binomial arises as the distribution of the sum of
N independent random variables each having the same logarithmic distribution
(Chapter 7), where N has a Poisson distribution. Thyrion (1960) called this an
Arfwedson process. Boswell and Patil (1970) termed it a Poisson sum (Pois-
son–stopped sum) of logarithmic rv’s. Let Y = X1 + X2 + · · · + XN , where the
Xi are iid logarithmic rv’s with pgf ln(1 − θz)/ ln(1 − θ). Assume also that N

is a Poisson rv (with parameter λ) which is independent of the Xi . Then the pgf
of Y is

exp

[
λ

(
ln(1 − θz)

ln(1 − θ)
− 1

)]
=
(

1 − θ

1 − θz

)−λ/ ln(1−θ)

; (5.15)

see Section 7.1.2.
The negative binomial as a limiting form for Pólya and Eggenberger’s urn

model was mentioned in Section 5.1. Consider a random sample of n balls from
an urn containing Np white balls and N(1 − p) black balls. Suppose that after
each draw the drawn ball is replaced together with c = Nβ others of the same
color. Let the number of white balls in the sample be X. Then

Pr[X = x] =
(

n

x

)(
p

β

)[x] (
q

β

)[n−x]/(
1

β

)[n]

, (5.16)

where a[x] = a(a + 1) · · · (a + x − 1); see Section 6.2.4. The limiting form as
n → ∞, p → 0, β → 0 such that np → ηk, nβ → η is negative binomial with
pmf (5.1), where P = η; see Eggenberger and Pólya (1923, 1928).

This limiting form of (5.16) has been called a “Pólya” distribution by, for
instance, Gnedenko (1961), Arley and Buch (1950), and Hald (1952). On the
other hand, Bosch (1963) called (5.16) a “Pólya” distribution.

Patil and Joshi (1968) called the negative binomial a “Pólya–Eggenberger”
and the distribution (5.16) simply a “Pólya” distribution. Proofs of the limiting
form appear in Bosch (1963), Lundberg (1940), Feller (1968), and Boswell and
Patil (1970). Thompson (1954) showed that a negative binomial distribution can
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also be obtained (approximately) from a modified form of Neyman’s contagious
distribution model (Section 9.6).

Distribution (5.16) arises also as a beta mixture of binomial distributions (Skel-
lam, 1948); see Sections 6.2.2 and 8.3.4. Boswell and Patil (1970) derived the
negative binomial as a limiting form of this mixture of binomials.

Feller (1957, p. 253) pointed out that the negative binomial can be regarded
as a convolution of a fixed number of geometric distributions; here, as for the
inverse sampling model (5.13), the exponent k is necessarily an integer. Maritz
(1952) considered how the negative binomial could arise from the addition of a
set of correlated Poisson rv’s. Kemp (1968a) showed that weighting a negative
binomial with parameters k and P = q/p using the weight function (sampling
chance) ax = αx gives another negative binomial but with parameters k and
αq/(1 − αq).

Bhattacharya (1966) obtained the negative binomial by mixing his confluent
hypergeometric distributions with a “generalized exponential” distribution; the
pgf of the outcome is

∫ ∞

0

1F1(a; b; θz)

1F1(a; b; θ)
× ca(c + 1)b−aθb−1e−(c+1)θ

1F1(a; b; θ) dθ

	(b)

= [1 − 1/(c + 1)]a

[1 − z/(c + 1)]a
. (5.17)

Bhattacharya showed that the generalized exponential mixing distribution is
unique by virtue of the uniqueness of the Mellin transform (Section 1.1.10),
and he applied his results to the theory of accident proneness in the case where
a = 1 and the number of accidents sustained by an individual has a sub-Poisson
distribution (Section 4.12.4).

The result of mixing negative binomials with constant exponent parameter
k using a beta distribution with parameters c and k − c, where k > c > 0, is
another negative binomial distribution with exponent parameter c; we have

∫ 1

0
[(1 + Pθ − Pθz)−k]

θc−1(1 − θ)k−c−1 dθ

B(c, k − c)
= (1 + P − Pz)−c. (5.18)

A mixture of Katti (1966) type H2 distributions (Section 6.11) using a particular
beta distribution can also yield a negative binomial distribution:

∫ 1

0
2F1[k, a; b;Pθ(z − 1)]

θb−1(1 − θ)a−b−1 dθ

B(b, a − b)

= 3F2[k, a, b; b, a;P(z − 1)]

= (1 + P − Pz)−k. (5.19)
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Also a gamma mixture of Poisson
∧

beta distributions (Section 8.3.3) gives rise
to a negative binomial:

∫ ∞

0
1F1[a; a + b; Pθ(z − 1)]

e−θ θa+b−1 dθ

	(a + b)

= 2F1[a, a + b; a + b; P(z − 1)]

= (1 + P − Pz)−a. (5.20)

These results are special cases of those in Section 8.3.6; see also Kemp (1968a).
The negative binomial arises also from several well-known stochastic pro-

cesses. The time-homogeneous birth-and-immigration process with zero initial
population was first obtained by McKendrick (1914); the equivalence of the
distributions arising from this process, from Greenwood and Yule’s model as
a gamma mixture of Poisson distributions, and from Lüders and Quenouille’s
Poisson–stopped sum of logarithmic distributions model was discussed by Irwin
(1941). The nonhomogeneous process with zero initial population known as the
Pólya process was developed by Lundberg (1940) in the context of risk theory.
Other stochastic processes that lead to the negative binomial include the sim-
ple birth process with nonzero initial population size (Yule, 1925; Furry, 1937),
Kendall’s (1948) nonhomogeneous birth-and-death process with zero death rate,
and the simple birth-death-and-immigration process with zero initial population
of Kendall (1949).

The geometric distribution is the equilibrium distribution of queue length for
the M/M/1 queue, while the negative binomial is the equilibrium queue length
distribution for the M/M/1 queue with a particular form of balking; see Haight
(1957) and also Bhat (2002). The negative binomial can also be obtained as the
equilibrium solution for a particular type of Markov chain known as a Foster
process (Foster, 1952).

5.4 MOMENTS

From the pgf (1 + P − Pz)−k , it follows that the factorial moment generation
function (fmgf) is (1 − P t)−k , and so

µ′
[r] = (k + r − 1)!

(k − 1)!
P r, r = 1, 2, . . . . (5.21)

Also the factorial cumulant generating function (fcgf) is −k ln(1 − P t), whence

κ[r] = k(r − 1)!P r, r = 1, 2, . . . . (5.22)

The relationship with the binomial pgf is readily apparent—replacing N by −k

and π by −P in the well-known formulas for the moment properties of the
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binomial distribution gives the corresponding formulas for the negative binomial
distribution. In particular

µr = kPQ

r−2∑
j=0

(
r − 1

j

)
µj + P

r−2∑
j=0

(
r − 1

j

)
µj+1,

µ = κ1 = kP = kq

p
,

µ2 = κ2 = kP (1 + P) = kq

p2
, (5.23)

µ3 = κ3 = kP (1 + P)(1 + 2P) = kq(1 + q)

p3
,

µ4 = 3k2P 2(1 + P)2 + kP (1 + P)(1 + 6P + 6P 2)

= 3k2q2

p4
+ kq(p2 + 6q)

p4
,

and

√
β1 = 1 + 2P

[kP (1 + P)]1/2
= 1 + q√

kq
,

β2 = 3 + 1 + 6P + 6P 2

kP (1 + P)
= 3 + p2 + 6q

kq
,

(5.24)

where p = 1/(1 + P) = Q−1 and q = P/(1 + P) = PQ−1.
The alternative notation, with the pgf in the form pk(1 − qz)−k , shows that

the mgf is pk(1 − qet )−k , the central mgf is e−kqt/ppk(1 − qet )−k , whence

µr+1 = q
∂µr

∂q
+ rkq

p2
µr−1,

and the cumulant generating function (cgf) is k ln p − k ln(1 − qet ).
Because this is a PSD with series parameter q, the cumulants satisfy

κr+1 = q
∂κr

∂q
, r = 1, 2, . . . . (5.25)

The distribution is overdispersed (variance greater than the mean), with an index
of dispersion equal to p−1 = 1 + P . The coefficient of variation is (kq)−1/2 =
[(1 + P)/(kP )]1/2.

The factorial moments of negative order are

µ−k = E

[
X!

(X + k)!

]
=
∫ 1

0

∫ tk−1

0
· · ·
∫ t1

0

(
1 − q

1 − qz

)k

ds dt1 · · · dtk−1;
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in particular

µ−1 = E

[
1

X + 1

]
= (1 − q)k

q(1 − k)
[1 − (1 − q)1−k]

(Balakrishnan and Nevzorov, 2003).
The mean deviation is

ν1 = 2m(k + m − 1)!P m

m!(k − 1)!Qm+k−1
= 2m(k + m − 1)!pk−1qm

m!(k − 1)!
, (5.26)

where m = [kP ] + 1 (that is, m is the smallest integer greater than the mean µ);
see Kamat (1965).

5.5 PROPERTIES

From the relationship

Pr[X = x + 1]

Pr[X = x]
= (k + x)P

(x + 1)Q
, (5.27)

it can be seen that

Pr[X = x + 1] < Pr[X = x] if x > kP − Q

and that

Pr[X = x] ≥ Pr[X = x − 1] if x ≤ kP − P. (5.28)

So when (k − 1)P is not an integer, there is a single mode at [(k − 1)P ], where
[·] denotes the integer part. When (k − 1)P is an integer, then there are two equal
modes at X = (k − 1)P and X = kP − Q. If kP < Q, the mode is at X = 0.

Van de Ven and Weber (1993) have obtained bounds for the median of the
negative binomial distribution which are valid for all parameter values. Their
definition of the median is inf

{
x : Pr[X ≤ x] ≥ 1

2

}
. Göb (1994) commented that

long-standing inequalities for the percentage points of the binomial cdf provide
bounds for the binomial median. He then used the relationship between the bino-
mial and the negative binomial cdf’s to obtain bounds for the negative binomial
median.

For fixed values of x and k the probabilities increase monotonically with P ;
for fixed x and P they increase monotonically with k.

When k < 1, we have pxpx+2/p
2
x+1 > 1 (where px = Pr[X = x]), and there-

fore the probabilities are logconvex; when k > 1, we have pxpx+2/p
2
x+1 < 1

and so now the probabilities are logconcave. Although the probabilities satisfy
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the logconvexity condition that is a sufficient condition for infinite divisibil-
ity only when k < 1, nevertheless the distribution is a Poisson–stopped sum of
logarithmic rv’s and so is infinitely divisible for all values of k.

The logconvexity/logconcavity properties imply that the distribution has a
decreasing hazard (failure) rate for k < 1 and an increasing hazard rate for k > 1.
For k = 1 the failure rate is constant. This is the no-memory (Markovian) property
of the geometric distribution; see Sections 5.2 and 5.9.1.

If X1 and X2 are independent variables each having a negative binomial
distribution with the same series parameter q but with possibly different power
parameters k1 and k2, then X1 + X2 also has a negative binomial distribution; its
pgf is

(1 + P − Pz)−k1−k2 = pk1+k2(1 − qz)−k1−k2 . (5.29)

As k tends to infinity and P to zero, with kP remaining fixed (kP = θ), the
right-hand side of (5.1) tends to the value e−θ θk/k!, corresponding to a Poisson
distribution with expected value θ .

Young (1970) gave formulas for the moments of the order statistics for the
negative binomial distribution and tabulated E[X(r)] for samples of size n =
2(1)8 to two decimal places. He showed that when p = Q−1 is close to unity
there is a good gamma approximation, enabling Gupta’s (1960a) tables for gamma
order statistics to be used.

Pessin (1961, 1965) noted that, as Q → ∞ with k constant, the standardized
negative binomial tends to a gamma distribution.

5.6 APPROXIMATIONS AND TRANSFORMATIONS

The sum of a number of negative binomial terms can be expressed in terms of an
incomplete beta function ratio and hence as a sum of binomial terms. We have

∞∑
j=r

Pr[X = j ] = (k + r − 1)!pkqr

(k − 1)!r!

(
1 + (k + r)q

(r + 1)
+ · · ·

)

= (k + r − 1)!pkqr

(k − 1)!r!
2F1[1, k + r; r + 1; q]

= (k + r − 1)!qr

(k − 1)!r!
2F1[r, 1 − k; r + 1; q]

= Bq(r, k)

B(r, k)
= Iq(r, k). (5.30)

Therefore

Pr[X ≤ r] = 1 − Iq(r + 1, k) = Ip(k, r + 1)

= Pr[Y ≥ k], (5.31)
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where Y is a binomial rv with pgf (q + pz)k+r . This formula has been redis-
covered on many occasions. Patil (1963a) gives a list of references; see also
Morris (1963). Approximations for binomial distributions (already discussed in
Section 3.6.1) can thereby be applied to negative binomial distributions.

Negative binomial approximations to the negative hypergeometric probabilities
have been obtained by López-Blázquez and Salamanca-Miño (2001).

Bartko (1966) studied five different approximations for cumulative negative
binomial probabilities. Their accuracy is similar to that of approximations for the
binomial distribution. The two most useful approximations in Bartko’s opinion
are as follows:

1. A corrected (Gram–Charlier) Poisson approximation

Pr[X ≤ x] = e−kP

x∑
j=0

(kP )j

j !
− (x − kP )

2(1 + P)
e−kP (kP )x

x!
. (5.32)

2. The Camp–Paulson approximation (see Johnson et al., 1995, Chapter 26)

Pr[X ≤ x] = 1√
2π

∫ K

−∞
e−u2/2 du,

where

K =

[
9x + 8

x + 1
− (9k − 1){kP/(x + 1)}1/3

k

]

3

[ {kP/(x + 1)}2/3

k
− 1

x + 1

]1/2
. (5.33)

Of these (5.33) is remarkably accurate, but it is much more complicated than
(5.32).

Peizer and Pratt (1968) and Pratt (1968) have obtained extremely accurate
normal approximations of the form

Pr[X ≤ r] =
∫ zi

−∞
(2π)−1/2e−x2/2 dx,

where

zi = di

(
1 + pg(a) + qg(b)

(r + k + 1/6)pq

)1/2

, i = 1, 2,

a = r + 0.5

(r + k)q
, b = k − 0.5

(r + k)p
, g(u) = 1 + u

1 − u
+ 2u ln u

(1 − u)2
,

(5.34)

and

d1 =
(

r + 2

3

)
p −

(
s − 1

3

)
q, d2 = d1 + 0.02

(
p

r + 1
− q

k
+ p − 0.5

r + k + 1

)
.
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Peizer and Pratt provided a table giving evidence concerning the remarkable
accuracy of the two approximations.

Guenther’s (1972) approximation is based on the incomplete gamma function;
it is

Pr[X ≤ r] ≈ Pr
[
χ2

2kq ≤ (2r + 1)p
]
, (5.35)

where χ2
2kq is a chi-squared variable; see Johnson et al. (1994, Chapter 17). It

enables tables of the incomplete gamma function to be used. Best and Gipps
(1974) presented evidence that

Pr[X ≤ r] ≈ Pr

[
χ2

8kq/(q+1)2 ≤ [4r + 2 + 4kq/(1 + q)]p

1 + q

]
(5.36)

provides a considerable improvement over (5.35).
A transformation that approximately normalizes and approximately equalizes

the variance is useful. The formulas E[X] = kP , Var(X) = kP (1 + P) suggest
the transformation

Y1 =
√

k sinh−1

√
X

k
, (5.37)

with Y1 approximately distributed as a standard normal variable.
More detailed investigations by Anscombe (1948) indicated that the transfor-

mation

Y2 = √
k − 0.5 sinh−1

√√√√X + 3
8

k − 3
4

(5.38)

is preferable; see also Laubscher (1961).

5.7 COMPUTATION AND TABLES

Computation of individual negative binomial probabilities can be reduced to the
calculation of the corresponding binomial probabilities by the use of the relation-
ship between the tails of the binomial and negative binomial distributions; see
the previous section. For low values of r the probabilities can also be computed
by recursion from Pr[X = 0] using

Pr[X = r + 1] = (k + r)q

r + 1
Pr[X = r]. (5.39)

For higher values of r Stirling’s expansion (Section 1.1.2) can be used for the
gamma functions in the expression

Pr[X = r + 1] = 	(k + r)pkqr

	(r + 1)	(k)
;
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this gives

ln Pr[X = r] ≈ (k − 1) ln

(
(k + r)p

k

)
+ (r + 0.5) ln

(
(k + r)q

r

)

− 0.5 ln

(
2πkq

p2

)
− 1

12k
− k

12r(k + r)
. (5.40)

Cumulative negative binomial probabilities can be computed from cumulative
binomial probabilities or by summation of individual probabilities; alternatively
they can be approximated using appropriate formulas from the previous section.

However, for fractional values of k, and for convenience in looking up
sequences of values, direct tables can be useful. Williamson and Bretherton
(1963) provided comprehensive six-decimal tables of Pr[X = r].

Grimm (1962) gave values of individual probabilities and of the cumulative
distribution function to five decimal places; see also Brown (1965). Taguti (1952)
gave minimum values of r for which

r∑
j=0

(j !)−1h(h + d) · · · [h + (j − 1)d](1 + d)−(h/d)−j ≥ α

for α = 0.95, 0.99; these are (approximate) percentage points of negative bino-
mial distributions with k = h/d , P = d .

Computer generation of rv’s from a geometric distribution is very straightfor-
ward. One method is to exploit the waiting-time property. Consider a stream of
uniform rv’s. Then geometric rv’s can be generated by counting the number of
uniforms needed to obtain a uniform less than p (the number of failures needed
to obtain the first success). Devroye (1986, p. 498) considers that “for p ≥ 1

3 the
method is probably difficult to beat in any programming environment.”

A second way to generate a geometric rv G is by analytic inversion of the cdf.
Let U be a uniform rv. Then G = [ln(U)/ ln(1 − p)] (where [·] denotes the
integer part). If a stream of exponential rv’s is available, then discretizing the
exponential (E) gives G = [−E/ ln(1 − p)]. Devroye notes (in an exercise) that
there may be an accuracy problem for low values of p and that one way that this
may be overcome is via the expansion

ln(1 − p) = 2

c

(
1 + 1

3c2
+ 1

5c4
+ · · ·

)
,

where c = 1 − 2/p (c is negative).
The negative binomial with an integer parameter k = N can be generated as

the sum of N geometric rv’s. Except for low values of N (say N = 2, 3, 4), this
method cannot be advocated as it requires many uniforms for a single output
negative binomial rv. This argument applies a fortiori to the use of the sum of a
Poisson number of logarithmic rv’s.
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The method generally recommended for generating negative binomial rv’s
with changing parameters is to generate Poisson rv’s with random parameters
drawn from a gamma distribution [see, e.g., algorithm NB3 in Fishman (1978)].
For fixed parameters the use of a fast general method, such as indexed table
look-up, alias, or frequency table, is recommended.

Three simple stochastic models that can be used to generate correlated neg-
ative binomial rv’s have been described by Sim and Lee (1989). Two of their
methods are based on the autoregressive scheme of the first-order Markovian pro-
cess. The third uses the Poisson process from a first-order autoregressive gamma
sequence.

5.8 ESTIMATION

5.8.1 Model Selection

Early graphical methods for identifying whether or not a negative binomial model
is appropriate for a particular type of data were based on ratios of factorial
moments (Ottestad, 1939), or probability-ratio cumulants (Gurland, 1965), or
ratios of factorial cumulants (Hinz and Gurland, 1967). Ord’s method of plotting
ur = rfr/fr−1 against r (where fr is an observed frequency) gives an upward-
sloping straight line, ur ≈ (k + r − 1)p; see Ord (1967a, 1972) and Tripathi and
Gurland (1979). Grimm’s (1970) method and the methods of Hoaglin, Mosteller,
and Tukey (1985) can also be used; see Section 4.7.1.

5.8.2 P Unknown

Consider the total number of trials k + X needed to obtain k successes when
the probability of a success is p (the inverse sampling model). Then the mini-
mum variance unbiased estimator (MVUE) of p = (1 + P)−1, based on a single
observation x of X, is

p
◦ = k − 1

k + x − 1
, (5.41)

and the Cramér–Rao lower bound on its variance is

Var(p◦
) ≥ p2q

k
. (5.42)

Best (1974) stated that

Var(p◦
) = p2

∞∑
r=1

(
k + r − 1

r

)−1

qr; (5.43)

Mikulski and Smith (1976) showed that

Var(p◦
) ≤ p2q

k − p + 2
. (5.44)
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These bounds on the variance of p
◦ were sharpened by Ray and Sahai (1978)

and Sahai and Buhrman (1979).
Given a sample of observations from a negative binomial distribution with

power parameter k, consideration of the pgf in the form G(z) = pk(1 − qz)−k

shows that the distribution is a PSD, and hence the maximum-likelihood equation
for q is the first-moment equation x = kq̂/(1 − q̂); thus

q̂ = x

k + x
. (5.45)

Roy and Mitra (1957) showed that the uniformly minimum variance unbiased
estimator (UMVUE) of P = q/p is θ̃/(1 − θ̃ ), where

θ̃ =
∑

x xfx∑
x(k + x)fx − 1

, (5.46)

and the fx are the observed frequencies. The UMVUE of µ is
∑

xfx/(k
∑

fx)

and the UMVUE of µ2 is
∑

xfx

∑
(x + 1)fx/[n(n + 1)] (Guttman, 1958).

Irony (1992) commented that the steps needed to make Bayesian inferences
about q parallel those needed for Bayesian inferences about the binomial param-
eter p.

Maynard and Chow (1972) constructed an approximate Pitman-type “close”
estimator of P for small sample sizes. Scheaffer (1976) has studied methods for
obtaining confidence intervals for p = 1 − q. Gerrard and Cook (1972) and Binns
(1975) considered sequential estimation of the mean kq/(1 − q) when k is known.

5.8.3 Both Parameters Unknown

Consider now the situation where both parameters are unknown. Because of the
variability of the sample variance of the negative binomial distribution, samples
with the sample variance less than the sample mean (s2 < x) will occasionally
be encountered, even when a negative binomial model is appropriate. However,
when this occurs, the appropriateness of the model should be examined (see, e.g.,
Clark and Perry, 1989).

Method of Maximum Likelihood The maximum-likelihood estimators satisfy
the equations

k̂P̂ = x, (5.47)

ln(1 + P̂ ) =
∞∑

j=1


(k̂ + j − 1)−1

∞∑
i=j

fj


 , (5.48)

where fj is an observed frequency; see Fisher (1941), Bliss and Fisher (1953),
and Wise (1946). Iteration is required for the solution of these equations. It
is important to realize that iteration may be very slow if the initial estimates
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are poor. Rapid explicit methods that can provide good initial estimates have
therefore been studied extensively. Ross and Preece (1985) have advocated the
use of the maximum-likelihood program (MLP) of Ross (1980).

Method of Moments The simplest way to estimate the parameters is by the
method of moments, that is, by equating the sample mean x and sample variance
s2 to the corresponding population values.

Thus, if x1, x2, . . . , xn are n observed values (supposed independent), we cal-
culate the solutions k̃, P̃ of the equations

k̃P̃ = x and k̃P̃ (1 + P̃ ) = s2;
this gives

P̃ = s2

x
− 1, k̃ = x2

s2 − x
. (5.49)

Bowman and Shenton (1965, 1966) obtained asymptotic formulas for the
variances, covariances, and biases of the moment and maximum-likelihood esti-
mators.

Method of Mean and Zero Frequency In place of (5.48) an equation obtained
by equating the observed and expected numbers of zero values may be used.
This equation is

f0 = (1 + P †)−k†
, (5.50)

where f0 is the number of zero values. Combining this equation with the equation
k†P † = x gives

P †

ln(1 + P †)
= − x

ln f0
. (5.51)

Other Methods Gurland (1965) and Gurland and Tripathi (1975) put forward
a method based on the solution of linear equations involving functions of the
moments and/or frequencies; see also Katti and Gurland (1962a). Gurland (1965)
and Hinz and Gurland (1967) concluded that estimators based on the factorial
cumulants and a certain function of the zero frequency have good efficiency
relative to maximum likelihood.

Pieters et al. (1977) made small-sample comparisons of various methods using
simulation. Willson, Folks, and Young (1984) extended this work by considering
not only the bias but also the standard deviation and the mean square error of
the method of moments and maximum-likelihood estimators and by comparing
these to a proposed multistage estimation procedure. In her comment on their
work, Bowman (1984) pointed out the riskiness in depending on small samples
when estimating k and questioned the choice of n = 5 as the initial sample size
for the multistage procedure.


