
C H A P T E R 6

Hypergeometric Distributions

6.1 DEFINITION

The classical hypergeometric distribution is the distribution of the number of
white balls in a sample of n balls drawn without replacement from a population
of N balls, Np of which are white and N − Np are black. The probability mass
function (pmf) is

Pr[X = x] =
(

Np

x

)(
N − Np

n − x

)/(
N

n

)
(6.1)

=
(

n

x

)(
N − n

Np − x

)/(
N

Np

)
, (6.2)

where n ∈ Z+, N ∈ Z+, 0 < p < 1, and max(0, n − N + Np) ≤ x ≤ min(n, Np).
The probability generating function (pgf) is

G(z) = 2F1[−n,−Np;N − Np − n + 1; z]

2F1[−n,−Np;N − Np − n + 1; 1]
, (6.3)

where

2F1[α, β; γ ; z] = 1 + αβ

γ
· z

1!
+ α(α + 1)β(β + 1)

γ (γ + 1)
· z2

2!
+ · · ·

is a Gaussian hypergeometric series (Section 1.1.6).
The parameters in

G(z) = 2F1[a, b; c; z]

2F1[a, b; c; 1]

need not be restricted to a = −n, b = −Np, c = N − Np − n + 1. Eggenberger
and Pólya (1923, 1928) studied a more general urn model leading to the pmf

Pr[X = x] =
(

n

x

)(−n − (w + b)/c

−x − w/c

)/(−(w + b)/c

−w/c

)
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and pgf

G(z) = 2F1[−n,w/c;−n + 1 − b/c; z]

2F1[−n,w/c;−n + 1 − b/c; 1]
, (6.4)

where w > 0, b > 0, and n is a positive integer. Here it is possible for c to be
either negative or positive. Taking w/c = −Np leads to the classical hypergeo-
metric distribution.

The case w/c > 0 arises from several models; the names negative (inverse)
hypergeometric distribution, hypergeometric waiting-time distribution, and beta–
binomial distribution all refer to the same mathematical distribution, as shown
in Section 6.2.2.

The distributions mentioned so far have finite support. A distribution with
infinite support, x = 0, 1, 2, . . . , and pgf

G(z) = 2F1[k, �; k + � + m; z]

2F1[k, �; k + � + m; 1]
, k > 0, � > 0, m > 0, (6.5)

arises as a beta mixture of negative binomial distributions. It is known as the
beta–negative binomial distribution (beta–Pascal distribution) and also as the
generalized Waring distribution; see Section 6.2.3.

The classical hypergeometric distribution, like the negative (inverse) hyperge-
ometric (i.e., the beta–binomial) and the beta–negative binomial distributions, is
a member of Ord’s (1967a) difference-equation system of discrete distributions
(see Sections 6.4 and 2.3.3). However, none of the three hypergeometric-type
distributions is a power series distribution (PSD) (Section 2.2).

6.2 HISTORICAL REMARKS AND GENESIS

6.2.1 Classical Hypergeometric Distribution

The urn sampling problem giving rise to the classical hypergeometric distribution
(Section 6.1) was first solved by De Moivre (1711, p. 236), when considering
a generalization of a problem posed by Huygens. A multivariate version of the
problem was solved by Simpson in 1740 [see Todhunter (1865, p. 206)], but little
attention was given to the univariate distribution until Cournot (1843, pp. 43, 68,
69) applied it to matters concerning conscription, absent parliamentary represen-
tatives, and the selection of deputations and juries.

The reexpression of (6.1) as (6.2) shows that the distribution is unaltered
when n and Np are interchanged. Note that the pmf of a hypergeometric-type

distribution can always be manipulated into the form

(
a

b

)(
c

d

)/(
a + c

b + d

)
.

The pgf (6.3) for the classical hypergeometric distribution can be restated as

G(z) = 2F1[−n,−Np;−N; 1 − z] (6.6)
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using a result from the theory of terminating Gaussian hypergeometric series.
This shows that the distribution is both GHPD and GHFD; see Sections 2.4.1
and 2.4.2.

The characteristic function is

2F1[−n,−Np;N − Np − n + 1; eit ]

2F1[−n,−Np;N − Np − n + 1; 1]
, (6.7)

and the mean and variance are

µ = E[X] = np and µ2 = np(1 − p)(N − n)

N − 1
; (6.8)

further moment formulas are given in Section 6.3.
The properties of the distribution were investigated in depth by Pearson (1895,

1899, 1924), who was interested in developing the system of continuous distri-
butions that now bears his name via limiting forms of discrete distributions.
Important further properties of the classical hypergeometric distribution were
obtained by Romanovsky (1925).

6.2.2 Beta–Binomial Distribution, Negative (Inverse) Hypergeometric
Distribution: Hypergeometric Waiting-Time Distribution

This distribution arises from a number of different models. We consider first the
most widely used model.

The beta–binomial model gives the distribution as a mixture of binomial
distributions, with the binomial parameter p having a beta distribution:

Pr[X = x] =
∫ 1

0

n!

x!(n − x)!
px(1 − p)n−x × pα−1(1 − p)β−1 dp

B(α, β)
(6.9)

=
(

n

x

)(−α − β − n

−α − x

)/(−α − β

−α

)
=

(−α

x

)( −β

n − x

)/(−α − β

n

)
, n ∈ Z+,

0 ≤ α, 0 ≤ β, (6.10)

where x = 0, 1, . . . , n. The pgf is

G(z) = 2F1[−n, α;−β − n + 1; z]

2F1[−n, α;−β − n + 1; 1]

= 2F1[−n, α;α + β; 1 − z] (6.11)

(the distribution is therefore both GHPD and GHFD). The mean and variance are

µ = nα

α + β
and µ2 = nαβ(α + β + n)

(α + β)2(α + β + 1)
. (6.12)
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This model has been obtained and subsequently applied in many different fields
by a number of research workers (see Section 6.9.2). When α = β = 1, the out-
come is the discrete rectangular distribution (see Section 6.10.1).

This derivation is closely related to Condorcet’s negative hypergeometric
model, which seems to have been derived for the first time by Condorcet in
1785; see Todhunter (1865, p. 383). Let A and B be two mutually exclusive
events that have already occurred v and w times, respectively, in v + w trials.
Let n = k + �. Then the probability that in the next n trials events A and B will
happen k and � times, respectively (where k and � are nonnegative integers), is

(k + �)!

k!�!

∫ 1

0
xv+k(1 − x)w+� dx

/∫ 1

0
xv(1 − x)w dx

= (k + �)!(v + k)!(w + �)!(v + w + 1)!

k!�!(v + k + w + � + 1)!v!w!

=
(

n

k

)(−v − w − n − 2

−v − 1 − k

) /(−v − w − 2

−v − 1

)
=

(−v − 1

k

)(−w − 1

n − k

) /(−v − w − 2

n

)
, k = 0, 1, . . . , n;

(6.13)
see also Pearson (1907). The parameters here are n = n, Np = −v − 1, and
N = −v − w − 2. Because N is negative, the name negative hypergeometric
distribution is used. The pgf is

G(z) = 2F1[−n, v + 1; −w − n; z]

2F1[−n, v + 1;−w − n; 1]
(6.14)

and the mean and variance are

µ = n(v + 1)

v + w + 2
and µ2 = n(v + 1)(w + 1)(v + w + n + 2)

(v + w + 2)2(v + w + 3)
. (6.15)

Higher moments are discussed in Section 6.3.
Condorcet’s derivation assumes that sampling takes place from an infinite

population. Prevost and Lhuilier in 1799 recognized that an equivalent expression
is obtained when two samples are taken in succession from a finite population,
without any replacements; see Todhunter (1865, p. 454).

The derivation of the distribution of the number of exceedances is mathemat-
ically similar to Condorcet’s result; see Gumbel and von Schelling (1950) and
Sarkadi (1957b). Gumbel (1958) credits this to Thomas (1948). Consider two
independent random samples of sizes m and n drawn from a population in which
a measured character has a continuous distribution. The number of exceedances
X is defined as the number (out of n) of the observed values in the second sample
that exceed the rth largest of the m values in the first sample. The probability
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that in n future trials there will be x values exceeding the rth largest value in m

past trials is

Pr[X = x] =
(

m

r

)
r

(
n

x

)
(m + n)−1

/(
m + n − 1

r + x − 1

)
=

(
n

x

)(−m − n − 1

−r − x

)/(−m − 1

−r

)
=

(−r

x

)(−m + r − 1

n − x

)/(−m − 1

n

)
, (6.16)

where x = 0, 1, . . . , n. The pgf is

G(z) = 2F1[−n, r;−n − m + r; z]

2F1[−n, r;−n − m + r; 1]
. (6.17)

The parameters for the exceedance model are related to the negative hypergeo-
metric model by r = v + 1, m − r = w.

Irwin (1954) pointed out that direct sampling for a sample of fixed size n

from an urn with Np white balls and N − Np black balls, as in Section 6.1, but
with replacement together with an additional similarly colored ball after each
ball is drawn also gives rise to the negative hypergeometric distribution. This is
a particular case of Pólya-type sampling (see Section 6.2.4).

Suppose now that sampling without replacement (as described in Section 6.1)
is continued until k white balls are obtained (0 < k ≤ Np). The distribution of
the number of draws that are required is known as the inverse hypergeometric
distribution or hypergeometric waiting-time distribution. (The model is analogous
to the inverse binomial sampling model for the negative binomial distribution;
however, the range of possible values for a negative hypergeometric distribution
is finite because there is not an infinitude of black balls that might be drawn.)
For this distribution

Pr[X = x] =
(

Np

k − 1

)
(Np − k + 1)

(
N − Np

x − k

)
(N − x + 1)−1

/(
N

x − 1

)
=

(
x − 1

x − k

)(
N − x

N − Np − x + k

)/(
N

N − Np

)
=

( −k

x − k

)(
k − Np − 1

N − Np − x + k

)/(−Np − 1

N − Np

)
, (6.18)

where k ∈ Z+, N ∈ Z+, 0 < p < 1, and x = k, k + 1, . . . , k + N − Np, by mani-
pulation of the factorials. Comparison with (6.13) shows that this is a negative
hypergeometric distribution shifted k units away from the origin.

The pgf is

G(z) = zk 2F1[k, Np − n; k − N; z]

2F1[k, Np − n; k − N; 1]
(6.19)
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and the mean and variance are

µ = k + (N − Np)k

Np + 1
= k(N + 1)

Np + 1
,

µ2 = k(N − Np)(N + 1)(Np + 1 − k)

(Np + 1)2(Np + 2)
.

(6.20)

The term “inverse hypergeometric distribution” can refer either to the total
number of draws, as above, or to the number of unsuccessful draws, as in Kemp
and Kemp (1956a) and Sarkadi (1957a). Bol’shev (1964) related the inverse
sampling model to a two-dimensional random walk. Guenther (1975) has writ-
ten a helpful review paper concerning the negative (inverse) hypergeometric
distribution.

6.2.3 Beta–Negative Binomial Distribution: Beta–Pascal Distribution,
Generalized Waring Distribution

The beta–negative binomial distribution was obtained analogously to the beta–
binomial distribution by Kemp and Kemp (1956a), who commented that it arises
both as a beta mixture of negative binomial distributions with the pgf
(1 − λ)k/(1 − λz)k and as an F distribution mixture of the negative binomial
distribution with pgf (1 + P − Pz)−k . We have the pgf

G(z) =
∫ 1

0

(
1 − λ

1 − λz

)k

× λ�−1(1 − λ)m−1 dλ

B(�, m)
(6.21)

=
∫ ∞

0
(1 + P − Pz)−k × P �−1(1 + P)−�−m dP

B(�, m)

= 2F1[k, �; k + � + m; z]

2F1[k, �; k + � + m; 1]
, k ≥ 0, � ≥ 0, m ≥ 0. (6.22)

The probabilities are

Pr[X = x] =
(−k

x

)(
m + k − 1

−� − x

)/(
m − 1

−�

)
=

(−�

x

)(
� + m − 1

−k − x

)/(
m − 1

−k

)
, x = 0, 1, . . . , (6.23)

and the mean and variance are

µ = k�

m − 1
and µ2 = k�(m + k − 1)(m + � − 1)

(m − 1)2(m − 2)
. (6.24)

The moments exist only for r < m, however; see Section 6.3.
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Another name that has sometimes been used for the distribution is inverse
Markov–Pólya distribution. Kemp and Kemp (1956a) pointed out that this dis-
tribution also arises by inverse sampling from a Pólya urn with additional replace-
ments; see the next section.

Unlike the classical hypergeometric and the negative hypergeometric distri-
butions, the support of the beta–negative binomial distribution is infinite. Also,
unlike those distributions, the beta–negative binomial is not a Kemp GHFD. It
is, however, a Kemp GHPD.

The term “beta–Pascal” is often applied to a shifted form of the distribution
(6.21) with support k, k + 1, . . . [see, e.g., Raiffa and Schlaifer (1961, pp. 238,
270) and Dubey (1966a)]. Here k is necessarily an integer.

The unshifted distribution with pgf (6.22) and support 0, 1, . . . has been
studied in considerable detail by Irwin (1963, 1968, 1975a,b,c) and Xekalaki
(1981, 1983a,b,c,d) under the name generalized Waring distribution. Irwin (1963)
developed it from the following generalization of Waring’s expansion (see
Section 6.10.4):

(c − a − 1)!

(c − a + k − 1)!
= (c − 1)!

(c + k − 1)!

[
1 + ak

c + k
+ a(a + 1)k(k + 1)

(c + k)(c + k + 1)2!
+ · · ·

]
= (c − 1)!

(c + k − 1)!
2F1[a, k; c + k; 1].

Irwin’s procedure of setting Pr[X = x] proportional to the (x + 1)th term in
this series is equivalent (as he realized) to adopting the pgf

G(z) = 2F1[a, k; c + k; z]

2F1[a, k; c + k; 1]
, (6.25)

where k = −n, a = −Np, and c + k = N − Np − n + 1 would give the classical
hypergeometric distribution. But note that Irwin’s restrictions on the parameters
are c > a > 0, k > 0. Irwin obtained the factorial moments

µ′
[r] = (a + r − 1)!(k + r − 1)!(c − a − r − 1)!

(a − 1)!(k − 1)!(c − a − 1)!
, (6.26)

whence, provided that they exist,

µ = ak

c − a − 1
and µ2 = ak(c − a + k − 1)(c − 1)

(c − a − 1)2(c − a − 2)
. (6.27)

Further properties of the distribution, relationships to its Pearson-type con-
tinuous analogs, tail-length behavior, and parameter estimation are the subjects
of Irwin (1968, 1975a,b,c). Xekalaki (1981) has written an anthology of results
concerning urn models, mixture models, conditionality models, STER (Sums suc-
cessively Truncated from the Expectation of the Reciprocal) models, and some
related characterizations. In Xekalaki (1983a) she studied infinite divisibility,
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completeness, and regression properties of the distribution and in Xekalaki (1985)
she showed that the distribution can be determined uniquely from a knowledge
of certain conditional distributions and some appropriately chosen regression
functions. Applications of the distribution are given in Section 9.3.

Special cases of the distribution are the Yule and Waring distributions; see
Sections 10.3 and 10.4.

6.2.4 Pólya Distributions

The urn models described earlier in this chapter are all particular cases of the
Pólya urn model. This was put forward by Eggenberger and Pólya (1923) as a
model for contagious distributions, that is, for situations where the occurrence of
an event has an aftereffect; see also Jordan (1927) and Eggenberger and Pólya
(1928).

Suppose that a finite urn initially contains w white balls and b black balls
and that balls are withdrawn one at a time, with immediate replacement, together
with c balls of a similar color. Then the probability that x white balls are drawn
in a sample of n withdrawals is

Pr[X = x] =
(

n

x

)
w(w + c) . . . [w + (x − 1)c]b(b + c) . . . [b + (n − x − 1)c]

(w + b)(w + b + c) . . . [w + b + (n − 1)c]

=
(

n

x

)
B(x + w/c, n − x + b/c)

B(w/c, b/c)

=
(

n

x

)(−n − (w + b)/c

−x − w/c

)/(−(w + b)/c

−w/c

)
=

(−w/c

x

)(−b/c

n − x

)/(−(w + b)/c

n

)
. (6.28)

Other ways of expressing the probabilities are discussed in Bosch (1963). The
pgf is

G(z) = 2F1[−n,w/c;−n + 1 − b/c; z]

2F1[−n,w/c;−n + 1 − b/c; 1]
(6.29)

and the mean and variance are

µ = nw

b + w
and µ2 = nwb(b + w + nc)

(b + w)2(b + w + c)
. (6.30)

Pólya (1930) pointed out the following particular cases: If c is positive, then
success and failure are both contagious; if c = 0, then events are independent
(the classical binomial situation); while if c is negative, then each withdrawal
creates a reversal of fortune. When c is negative such that w/c is a negative
integer (e.g., c = −1), the outcome is the classical hypergeometric distribution,
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whereas when c is positive such that w/c is a positive integer (e.g., c = +1), the
negative hypergeometric distribution is the result. Inverse sampling for a fixed
number of white balls leads to the inverse (negative) hypergeometric when w/c
is a negative integer; it gives a beta–negative binomial distribution when w/c is
a positive integer.

6.2.5 Hypergeometric Distributions in General

In

Pr[X = x] =
(

a

x

)(
b

n − x

)/(
a + b

n

)
(6.31)

it is clearly not essential that all the parameters n, a, b are positive; in fact, with
certain restrictions, we can take any two of them negative and the remaining one
positive and still obtain a valid pmf. The conditions under which (6.31) provides
an honest distribution, with n, a, and b taking real values, were investigated
by Davies (1933, 1934), Noack (1950), and Kemp and Kemp (1956a). Such
distributions were termed generalized hypergeometric distributions by Kemp and
Kemp, but the name is now used for a much wider class. General hypergeometric
distributions have pgf’s of the form

G(z) = 2F1[−n,−a; b − n + 1; z]

2F1[−n,−a; b − n + 1; 1]
; (6.32)

they form a subset of Kemp’s (1968a,b) wider class of GHPDs with pgf’s of
the form

G(z) = pFq[a1, a2, . . . , ap; b1, b2, . . . , bq; λz]

pFq[a1, a2, . . . , ap; b1, b2, . . . , bq; λ]
;

see Section 2.4.1.
Kemp and Kemp distinguished four main types of distribution corresponding

to (6.31), divided into subtypes as in Table 6.1. They adopted the following
conventions:

(a) If Pr[X = r + 1] = 0, then Pr[X = x] = 0 for all x ≥ r + 1.
(b) When α < 0 and β < 0 with β an integer,

α!

(α + β)!
= (−1)β(−α − β − 1)!

(−α − 1)!
.

They also imposed the restriction Pr[X = 0] �= 0 to ease the derivation of the
moment and other properties of the distributions.

(i) The classical hypergeometric distribution belongs to type IA(i) or IA(ii)
with n, a, and b all integers.
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Table 6.1 Conditions for the Existence of Types I, II, III, and IV
General Hypergeometric Distributions

Type Conditions Support

IA(i) n − b − 1 < 0; n an integer; 0 ≤ n − 1 < a x = 0, 1, . . . , n

IA(ii) n − b − 1 < 0; a an integer; 0 ≤ a − 1 < n x = 0, 1, . . . , a

IB n − b − 1 < 0; J < a < J + 1; J < n < J + 1 x = 0, 1, . . .

IIA a < 0 < n; n an integer; b < 0; b �= −1 x = 0, 1, . . . , n

IIB a < 0 < a + b + 1; J < n < J + 1; J < n − b − 1 < J + 1 x = 0, 1, . . .

IIIA n < 0 < a; a an integer; b < n − a; b �= n − a − 1 x = 0, 1, . . . , a

IIIB n < 0 < a + b + 1; J < a < J + 1; J < n − b − 1 < J + 1 x = 0, 1, . . .

IV a < 0; n < 0; 0 < a + b + 1 x = 0, 1, . . .

Note: J is a nonnegative integer (the same for any one type of distribution).

(ii) The negative (inverse) hypergeometric distribution belongs to Type IIA
or IIIA with n, a, and b again all integers.

(iii) The beta–negative binomial is Type IV.
(iv) A dualism exists between types IA(i) and IA(ii), between Types IIA and

IIIA, and between Types IIB and IIIB (using the substitutions a ↔ n and
a + b − n ↔ b).

(v) No meaningful models have been found for Types IB, IIB, or IIIB.

Sarkadi (1957a) extended the class of distributions corresponding to (6.31) by
including the cases b = −1, b = n − a − 1 that were excluded from types IIA
and IIIA, respectively, by Kemp and Kemp. He pointed out that the sum of the
probabilities over the ranges 0 ≤ x ≤ n and 0 ≤ x ≤ a, respectively, is equal to
unity in both cases, and so (6.31) defines a proper distribution.

By changing Kemp and Kemp’s definition of α!/(α + β)!, Shimizu (1968)
and Sibuya and Shimizu (1981) were able to include further distributions with
support [m1, m2], [m1, ∞), [−m2, −m1], (−∞,−m1], where m1 and m2 are
positive integers. Their new types are distributions of the form ±X ± k, where
X is a rv of one of the types in Table 6.1 and k is an integer. Table 6.2 gives the

Table 6.2 Relations between Types of Hypergeometric Distributions

Kemp and Kemp Name Support Ord Shimizu

IA(i), IA(ii) Classical hypergeometric Finite I(a) A1
IIA, IIIA Negative (inverse) Finite I(b) A2

hypergeometric
(beta–binomial)

IB — Infinite I(e) B1
IIB, IIIB — Infinite I(e) B2
IV Beta–negative binomial Infinite VI B3
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broad relationships between Kemp and Kemp (1956a), Ord (1967a), and Shimizu
(1968) hypergeometric-type distributions.

Review articles concerning general hypergeometric distributions are by Guen-
ther (1983) and Sibuya (1983).

Kemp and Kemp’s (1975) paper was concerned with models for general
hypergeometric distributions. Besides urn models and models for contagion,
it gave (1) models based on equilibrium stochastic processes, (2) STER mod-
els, (3) conditionality models, (4) weighting models, and (5) mixing models. It
showed the following:

1. An equilibrium time-homogeneous stochastic process with birth and death
rates λi and µi such that λi−1/µi = (a1 + i − 1)/(b + i − 1) can yield a
type IIA/IIIA or a type IV distribution by a suitable choice of parameters.
Similarly

λi−1

µi

= (a1 + i − 1)(a2 + i − 1)

(b + i − 1)i
(6.33)

can lead to any one of type IA, IIA/IIIA, or IV by a suitable choice of
parameters.

2. The STER distributions arise in connection with an inventory decision
problem. If demand is a discrete rv with pgf G(z) = ∑

i≥0 piz
i , then the

corresponding STER distribution has probabilities that are Sums succes-
sively Truncated from the Expectation of the Reciprocal of the demand
variable, giving the STER pgf

H(z) = (1 − z)−1(1 − p0)
−1

∫ 1

z

[G(z) − p0] dz

z
; (6.34)

see Bissinger (1965) and Section 11.2.13. Kemp and Kemp found that, if
a type IIA/IIIA demand distribution has the support 1, 2, . . . , min(n, a), it
gives rise to a STER distribution that is also type IIA/IIIA; see also Kemp
and Kemp (1969b).

3. Let X and Y be mutually independent discrete rv’s. If X and Y are both
binomial with parameters (n, p) and (m,p), then the conditional distri-
bution of X|(X + Y ) is hypergeometric (type IA). If X and Y are both
negative binomial with parameters (u, λ) and (v, λ), then X|(X + Y ) has
a negative hypergeometric (type IIA/IIB) distribution (Kemp, 1968a). If

GX(z) = 1F1[−n; c;−λz]

1F1[−n; c; λ]
and GY (z) = exp λ(z − 1),

then the distributions of X|(X + Y ) and Y |(X + Y ) are both type IA. Dis-
crete Bessel distributions for X and Y can also lead to a type IA distribution
for X|(X + Y ). Similarly, binomial distributions with parameters (n, p) and
(m, 1 − p) for X and Y lead to a type IA distribution for X|(Y − X). Kemp
and Kemp (1975) gave further models of this kind; see Kemp (1968a) for
the general theory.
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4. Weighting models give rise to distributions that have been modified by the
method of ascertainment. When the weights (sampling chances) wx are
proportional to the value of the observation (i.e., to x), the distribution
with pgf 2F1[a1, a2; b; z]/2F1[a1, a2; b; 1] is ascertained as the distribution
with pgf

G(z) = z
2F1[a1 + 1, a2 + 1; b + 1; z]

2F1[a1 + 1, a2 + 1; b + 1; 1]
; (6.35)

if wx is proportional to x!/(x − k)!, then the same initial distribution is
ascertained as the distribution with pgf

G(z) = zk 2F1[a1 + k, a2 + k; b + k; z]

2F1[a1 + k, a2 + k; b + k; 1]
(6.36)

(Kemp, 1968a).
5. Kemp and Kemp (1975) pointed out that a beta mixture of extended

beta–binomial distributions can, under certain circumstances, give rise to
a beta–binomial distribution. Two possibilities are as follows:

G1(z) =
∫ 1

0
2F 1[−n, a; c; y(z − 1)]

yc−1(1 − y)d−c−1 dy

B(c, d − c)

= 2F1[−n, a; d; z − 1]; (6.37)

G2(z) =
∫ 1

0
2F 1[−n, d; b; y(z − 1)]

yc−1(1 − y)d−c−1 dy

B(c, d − c)

= 2F1[−n, c; b; z − 1]. (6.38)

They also commented that a type IIA/IIIA distribution can be obtained as a
gamma mixture of restricted Laplace–Haag distributions, and they pointed
out that a type IV distribution can be derived as a mixture of Poisson
distributions.

6.3 MOMENTS

The moment properties of the general hypergeometric distribution can be obtained
from the factorial moments and indeed exist only when the factorial moments
exist. The general form for the rth factorial moment (if it exists) for the distri-
bution with pgf (6.31) is

µ′
[r] = n!a!(a + b − r)!

(n − r)!(a − r)!(a + b)!
, (6.39)

and so
2F1[−a,−n;−a − b; −t] (6.40)

can be treated as the factorial moment generating function (fmgf) for the factorial
moments.
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Moments exist for the following:

Type IA(i) Always (but are zero if r > n)
Type IA(ii) Always (but are zero if r > a)
Type IB When r < a + b + 1
Type IIA Always (but are zero if r > n)
Type IIB Never
Type IIIA Always (but are zero if r > a)
Type IIIB Never
Type IV When r < a + b + 1

In other words,

µ′
[r] is finite for all r for types IA(i), IA(ii), IIA, and IIIA;

µ′
[r] is finite for r < a + b + 1 for types IB and IV; and

types IIB and IIIB have no moments.

Provided that the specified moment exists, it is straightforward (though tedious)
to show via the factorial moments that

E[X] =µ = na

a + b
,

Var(X) =µ2 = nab(a + b − n)

(a + b)2(a + b − 1)
,

µ3 = µ2(b − a)(a + b − 2n)

(a + b)(a + b − 2)
,

µ4 = µ2

(a + b − 2)(a + b − 3)

{
(a + b)(a + b + 1 − 6n) (6.41)

+ 3ab(n − 2) + 6n2 + 3abn(6 − n)

a + b
− 18abn2

(a + b)2

}
.

The moment ratios are√
β1 =

[
(a + b − 1)

abn(a + b − n)

]1/2
(b − a)(a + b − 2n)

(a + b − 2)
, (6.42)

β2 = (a + b)2(a + b − 1)

nab(a + b − n)(a + b − 2)(a + b − 3)

×
(

(a + b)(a + b + 1 − 6n) + 3ab(n − 2)

+ 6n2 + 3abn(6 − n)

a + b
− 18abn2

(a + b)2

)
+ 3. (6.43)
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Table 6.3 Comparison of Hypergeometric Types IA(ii), IIA, IIIA, and IV,
Binomial, Poisson, and Negative Binomial Distributions

Pr[X = x]

Negative
x IA(ii) Binomial IIA Poisson IIIA Binomial IV

0 0.076 0.107 0.137 0.135 0.123 0.162 0.197
1 0.265 0.269 0.266 0.271 0.265 0.269 0.267
2 0.348 0.302 0.270 0.271 0.284 0.247 0.220
3 0.222 0.201 0.184 0.180 0.195 0.164 0.144
4 0.075 0.088 0.093 0.090 0.093 0.089 0.083
5 0.013 0.026 0.036 0.036 0.032 0.042 0.044
6 0.001 0.006 0.011 0.012 0.007 0.017 0.023
7 0.000 0.001 0.003 0.003 0.001 0.007 0.011
8 0.000 0.000 0.000 0.001 0.000 0.002 0.005
9 — 0.000 0.000 0.000 — 0.001 0.003

10 — 0.000 0.000 0.000 — 0.000 0.001
11 — — — 0.000 — 0.000 0.001

≥12 — — — 0.000 — 0.000 0.001

Note: For each distribution the mean is 2, |n| = 10, |a/(a + b)| = 0.2, and |a + b| = 40. A dash
means that the probability is zero and 0.000 means that the probability is less than 0.0005.
Source: Adapted from Kemp and Kemp (1956a).

As a → ∞, b → ∞ such that a/(a + b) = p (constant), the moment prop-
erties tend to those of the binomial distribution, provided that n is a positive
integer. When n is negative and a/(a + b) tends to λ, λ < 0, then the moment
properties tend to those of the negative binomial distribution; see Table 6.3.

An alternative approach to the moment properties is via the differential equa-
tion for the mgf. The pgf is

G(z) = K 2F1[−n,−a; b − n + 1; z],

where K is a normalizing constant; this satisfies

θ(θ + b − n)G(z) = z(θ − n)(θ − a)G(z), (6.44)

where θ is the differential operator z d/dz. The moment generating function
(mgf) is G(et ); from the relationship between the θ and D = d/dz operators
(Section 1.1.4) it follows that G(et ) satisfies

D(D + b − n)G(et ) = et (D − n)(D − a)G(et ), (6.45)

where D is the differential operator d/dt. The central mgf is M(t) = e−µtG(et ),
and this satisfies

(D + µ)(D + µ + b − n)M(t) = et (D + µ − n)(D + µ − a)M(t). (6.46)
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Identifying the coefficients of t0, t1, t2, and t3 in (6.46) gives expressions for the
first four central moments that are equivalent to (6.41). Higher moments may be
obtained similarly. This is essentially the method of Pearson (1899).

Lessing (1973) has shown that the uncorrected moments can be obtained from
the following expression for the mgf:

G(et ) = (a + b − n)!

(a + b)!

∂n

∂yn

[
(1 + yet )a(1 + y)b

]
y=0 . (6.47)

Janardan (1973b) commented that this result is a special case of an expression
obtained by Janardan and Patil (1972).

The following finite difference relation holds among the central moments {µj }:
(a + b)µr+1 = [(1 + E)r − Er][µ2 + αµ1 + βµ0], (6.48)

where E is the displacement operator (i.e., Ep[µs] ≡ µs+p),

α = −a + n(a − b)

a + b
, β = nab(a + b − n)

(a + b)2
,

and µ0 = 1, µ1 = 0 (Pearson, 1924).
The mean deviation is

ν1 = E

[∣∣∣∣X − na

a + b

∣∣∣∣]
= 2m(b − n + m)

a + b

(
a

m

)(
b

n − m

)/(
a + b

n

)
, (6.49)

where m is the greatest integer not exceeding µ + 1 (Kamat, 1965).
Matuszewski (1962) and Chahine (1965) have studied the ascending factorial

moments of the negative (inverse) hypergeometric distribution.

6.4 PROPERTIES

Let

f (x|n, a, b) = Pr[X = x] =
(

a

x

)(
b

n − x

)/(
a + b

n

)
, (6.50)

F(x|n, a, b) =
∑

j

Pr[X = j ] =
∑

j

(
a

j

)(
b

n − j

)/(
a + b

n

)
, (6.51)

where the range of summation for j is max(0, n − b) ≤ j ≤ x [or 0 ≤ j ≤
min(x, n, a) when n and a are positive]. Then the following probability rela-
tionships hold:

f (x + 1|n, a, b) = (a − x)(n − x)

(x + 1)(b − n + x + 1)
f (x|n, a, b), (6.52)
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f (x|n, a + 1, b − 1) = (a + 1)(b − n + x)

(a + 1 − x)b
f (x|n, a, b), (6.53)

f (x|n + 1, a, b) = (b − n + x)(n + 1)

(n + 1 − x)(a + b − n)
f (x|n, a, b), (6.54)

f (x|n, a, b + 1) = (a + b − n + 1)(b + 1)

(b − n + x + 1)(a + b + 1)
f (x|n, a, b). (6.55)

Also
f (x|n, a, b) = f (n − x|n, b, a)

= f (a − x|a + b − n, a, b)

= f (b − n + x|a + b − n, b, a); (6.56)

see Lieberman and Owen (1961). Furthermore

F(x|n, a, b) = 1 − F(n − x − 1|n, b, a)

= F(b − n + x|a + b − n, b, a) (6.57)

= 1 − F(a − x − 1|a + b − n, a, b). (6.58)

Raiffa and Schlaifer (1961) obtained relationships between the tails of the hyper-
geometric, beta–binomial (negative hypergeometric), and beta–negative binomial
distributions. These authors used a different notation from Lieberman and Owen
(1961). Let Fh(·) and Gh(·) denote the lower and upper tails of a classical
hypergeometric distribution; then

Gh(k|n, � + m − 1, k + m − 1)

=
∑
x≥k

(
k + m − 1

x

)(
� + n − k

n − x

)/(
� + m + n − 1

n

)

=
∑

x≤n−k

(
� + n − k

x

)(
k + m − 1

n − x

)/(
� + m + n − 1

n

)
= Fh(n − k|n, � + m − 1, � + n − k). (6.59)

Furthermore, let

Gβb(k|m, � + m, n) =
∑
x≥k

(−m

x

)( −�

n − x

)/(−� − m

n

)

=
∑
x≥k

∫ 1

0

(
n

x

)
px(1 − p)n−x × pm−1(1 − p)�−1 dp

B(�, m)

(6.60)
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be the upper tail of a beta–binomial (negative hypergeometric) distribution.
Also let

FβPa(n|m, � + m, k)

=
∑

x≤n−k

(−k

x

)(
k + m − 1

−� − x

)/(
m − 1

−�

)

=
∑

x≤n−k

∫ 1

0

(
k + x − 1

x

)
(1 − λ)kλx × λ�−1(1 − λ)m−1 dλ

B(�, m)
(6.61)

denote the lower tail of a beta–negative binomial (beta–Pascal) distribution. Then
from the relationship between the tails of a binomial and a negative binomial
distribution (Section 5.6), Raiffa and Schlaifer proved that

Gβb(k|m, � + m, n) = FβPa(n|m, � + m, k)

and hence that

Gβb(k|m, � + m, n) = FβPa(n|m, � + m, k) (6.62)

= Gh(k|n, � + m − 1, k + m − 1) (6.63)

= Fh(n − k − 1|n, � + m − 1, � + n − k) (6.64)

by a probabilistic argument; see Raiffa and Schlaifer (1961, pp. 238–239).
From (6.52), Pr[X = x + 1] is greater or less than Pr[X = x] according as

(a − x)(n − x)

(x + 1)(b − n + x + 1)
≷ 1,

that is, according as

x ≷ (n + 1)(a + 1)

(a + b + 2)
− 1. (6.65)

Let c = (n + 1)(a + 1)/(a + b + 2). Then Pr[X = x] increases with x, reaching
a maximum at the greatest integer that does not exceed c, and then decreases.
The mode of the distribution is therefore at [c], where [·] denotes the integer part.
If c is an integer, then there are two equal maxima at c − 1 and c. [Note that, if a

and b are large, then the mode is very close to the mean, since µ = na/(a + b).]
The classical hypergeometric distribution is known to have a monotone like-

lihood ratio in x for known values of n and a + b (Ferguson, 1967).
The following limiting results hold:

(i) The classical hypergeometric distribution tends to a Poisson distribution
with mean µ as n → ∞, (a + b) → ∞ such that na/(a + b) = µ, µ con-
stant. Feller (1957), Nicholson (1956), Molenaar (1970a), and Lieberman
and Owen (1961) have examined conditions under which it tends to a
normal distribution.
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(ii) As a → ∞, b → ∞ such that a/(a + b) = p, p constant, 0 < p < 1, a
type IA(i) distribution tends to a binomial distribution with parameters
n, p.

(iii) If a is a positive integer, then as n → ∞, b → ∞ such that n/b =
p, p constant, 0 < p < 1, a type IA(ii) distribution tends to a binomial
distribution with parameters a, p.

(iv) As a and b both tend to −∞ in such a way that a/(a + b) = p, p con-
stant, 0 < p < 1, a type IIA distribution tends to a binomial distribution
with parameters n, p.

(v) As a → ∞, b → −∞ such that a/b = −λ, λ constant, 0 < λ < 1, a
type IIIA distribution tends to a negative binomial distribution with pgf
(1 − λ)k/(1 − λz)k , where k = −n.

(vi) As a → −∞, b → ∞ such that a/b = −λ, λ constant, 0 < λ < 1, a
type IV distribution similarly tends to a negative binomial distribution.

(vii) From the duality relationship between type IIA and type IIIA, a type IIA
distribution can also tend to a negative binomial and a type IIIA can tend
to a positive binomial distribution.

A comparison between hypergeometric types IA(i), IIA, IIIA, and IV, binomial,
Poisson, and negative binomial distributions [from Kemp and Kemp (1956a)] is
presented in Table 6.3; see also Table 3.1.

6.5 APPROXIMATIONS AND BOUNDS

There is a considerable variety of approximations to the individual probabilities,
and also to cumulative sums of probabilities, for the classical hypergeometric
distribution. Many of these are based on the approximation of the hypergeometric
distribution (6.1) by a binomial distribution with parameters n, p.

Sródka (1963) obtained some very good bounds on the probabilities:(
n

x

) (
Np − x

N

)x (
N − Np − n + x

N

)n−x (
1 + 6n2 − 6n − 1

12N

)

< Pr[X = x] <

(
n

x

)
px(1 − p)n−x

(
1 − n

N

)−n
(

1 + 6n2 + 6n − 1

12N

)−1

.

(6.66)
For sufficiently large N these can be simplified to(

n

x

)(
Np − x

N

)x (
N − Np − n + x

N

)n−x

< Pr[X = x] <

(
n

x

)
px(1 − p)n−x

(
1 − n

N

)−n

. (6.67)
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It is often adequate to use the simple binomial approximation

Pr[X = x] ≈
(

n

x

)
px(1 − p)n−x (6.68)

when n < 0.1N .
There is a marked improvement if n and p are replaced by n∗ and p∗, where

p∗ = (n − 1) + (N − n)p

N − 1
and n∗ = np

p∗ , (6.69)

that is, if n∗p∗ and n∗p∗(1 − p∗) are set equal to the theoretical mean and
variance of the hypergeometric distribution (Sandiford, 1960).

Greater accuracy still may be obtained by using the following modification
suggested by Ord (1968a):

Pr[X = x] ≈
(

n

x

)
px(1 − p)n−x

[
1 + x(1 − 2p) + np2 − (x − np)2

2Np(1 − p)

]
. (6.70)

Burr (1973) showed that

Pr[X = x] =
(

n

x

)
px(1 − p)n−x

[
1 + x − (x − np)2

2Np
+ O

(
1

N2p2

)]
, (6.71)

and that for n > Np a closer approximation is obtained by interchanging the roles
of n and Np.

Ma (1982) independently derived an approximation for n ≤ Np that is equiv-
alent to Ord’s approximation. He also showed that when n > Np interchanging
the roles of n and Np gives a better approximation.

Since, as already noted, the hypergeometric distribution is unchanged by inter-
changing n and Np, it is clear that a binomial with parameters Np, n/N has a
claim equal to that of a binomial with parameters n, p as an approximating distri-
bution for (6.1). In addition, the distribution of n − x could be approximated by
a binomial with parameters N − Np, n/N ; similarly the distribution of Np − x

could be approximated by a binomial with parameters N − n, p. Brunk et al.
(1968) compared these approximations. Their investigations support the opinion
of Lieberman and Owen (1961) that it is best to use the binomial with smallest
power parameter, that is, min(n, Np, N − Np, N − n).

The following binomial-type approximation for the cumulative probabilities
was obtained by Wise (1954):

x∑
j=0

Pr[X = j ] ≈
x∑

j=0

(
n

x

)
wj(1 − w)n−j , (6.72)

where w = (
Np − 1

2x
)
/
(
N − 1

2n + 1
2

)
; that is, he showed that the distribution

(6.1) is approximated by a binomial distribution with parameters n and(
Np − 1

2x
) / (

N − 1
2n − 1

2

)
.
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A more complicated approximation of a similar type was constructed by Ben-
nett (1965).

Molenaar (1970a) found that the use of

p‡ = Np − x/2

N − (n − 1)/2
− n

(
x − np − 1

2

)
6[N − (n − 1)/2]2

(6.73)

gives very accurate results even when n/N > 0.1.
Uhlmann (1966) made a systematic comparison between the hypergeometric

distribution (with parameters n, Np, N , where 0 < p < 1) and the binomial dis-
tribution (with parameters n, p). Denoting Pr[X ≤ c] for the two distributions
by LN,n,c(p) and Ln,c(p), respectively, he showed that in general

LN,n,c(p) − Ln,c(p)



=0 for p = 0,

>0 for 0 < p ≤ c(n − 1)−1N(N + 1)−1,

<0 for c(n − 1)−1N(N + 1)−1 + (N + 1)−1 ≤ p < 1,

=0 for p = 1;

these results simplify when n is odd.
Subsequently, in a study of the relationship between hypergeometric and bino-

mial pmf’s, Ahrens (1987) used simple majorizing functions (upper bounds) for
their ratio. He found that the ratio of the hypergeometric to the binomial pmf can
always be kept below

√
2 by a suitable choice of approximating binomial.

If the binomial approximation to the hypergeometric distribution can itself be
approximated by a Poisson or normal approximation (see Section 3.6.1), then
there is a corresponding Poisson or normal approximation to the hypergeometric.
Thus when p is small but n is large, the Poisson approximation

Pr[X = x] ≈ e−np(np)x

x!
(6.74)

may be used. Burr (1973) sharpened this approximation.
The χ2-test for association in a 2 × 2 contingency table uses a χ2 approxi-

mation for the tail of a hypergeometric distribution; this is

Pr[X ≤ x] ≈ Pr[χ2
[1] ≥ T ], (6.75)

where

T = (N − 1)(x − np)2

p(1 − p)n(N − n)
.

The relationship between the tails of a χ2 distribution (Johnson et al., 1994,
Chapter 17) and a Poisson distribution means that this is a Poisson-type approx-
imation for the cumulative hypergeometric probabilities. It can be improved by
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the use of Yates’ correction, giving “the usual 1
2 -corrected chi-statistic” of Ling

and Pratt (1984). It is appropriate for n large, provided that p is not unduly small.
From the relationship between the χ2 distribution with one degree of freedom

and the normal distribution, we have, when p is not small and n is large,

Pr[X ≤ x] ≈ (2π)−1/2
∫ y

−∞
exp

(
−u2

2

)
du, (6.76)

with

y = x − np + 1
2

[(N − n)np(1 − p)/(N − 1)]1/2
.

Hemelrijk (1967) reported that, unless the tail probability is less than about
0.07 and Np + n ≤ N/2, some improvement is effected by replacing (N − 1)−1

by N−1 under the square-root sign. A more refined normal approximation was
proposed by Feller (1957) and Nicholson (1956).

Pearson (1906) approximated hypergeometric distributions by (continuous)
Pearson-type distributions. This work was continued by Davies (1933, 1934).
The Pearson distributions that appeared most promising were type VI or III.
Bol’shev (1964) also proposed an approximation of this kind that gives good
results for N ≥ 25.

Normal approximations would, however, seem to be the most successful.
Ling and Pratt (1984) carried out an extensive empirical study of 12 normal and
3 binomial approximations for cumulative hypergeometric probabilities, includ-
ing two relatively simple normal approximations put forward by Molenaar (1970a,
1973). Ling and Pratt considered that binomial approximations are not appropriate
as competitors to normal approximations because of the computational problems
with the tails. The four normal approximations that they found best originated
from an unpublished paper; this was submitted to the Journal of the American
Statistical Association by D. B. Peizer in 1968 but was never revised or resub-
mitted. Peizer’s approximations are extremely good, but they are considerably
more complicated than those above of Molenaar. See Ling and Pratt (1984) for
details of the approximations that they studied.

Some new binomial approximations to the hypergeometric distribution have
recently been obtained by López-Blázquez and Salamanca Miño (2000).

6.6 TABLES, COMPUTATION, AND COMPUTER GENERATION

An extensive set of tables of individual and cumulative probabilities for the clas-
sical hypergeometric distribution was prepared by Lieberman and Owen (1961).
They give values for individual and cumulative probabilities to six decimal
places for

N = 2(1)50(10)100, Np = 1(1)N − 1, n = 1(1)Np.

Less extensive tables were published earlier by Chung and DeLury (1950).
Graphs based on hypergeometric probabilities were given by Clark and Koop-
mans (1959).
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Guenther (1983) thought that the best way to evaluate Pr[X ≤ x] is from
the Lieberman and Owen tables or by means of a packaged computer program.
Computer algorithms have been provided by Freeman (1973) and Lund (1980).
Lund’s algorithm was improved by Shea (1989) and by Berger (1991).

Little serious attention seems to have been given to the use of Stirling’s
expansion for the computation of individual hypergeometric probabilities.

Computer generation of classical hypergeometric random variables has been
discussed in detail by Kachitvichyanukul and Schmeiser (1985). When the param-
eters remain constant, the alias method of Walker (1977) and Kronmal and
Peterson (1979) is a good choice. Kachitvichyanukul and Schmeiser gave an
appropriate program with safeguards to avoid underflow.

The simplest of all algorithms needs a very fast uniform generator. It is based
on a sequence of trials in which the probability of success depends on the num-
ber of previous successes; that is, it uses the model of finite sampling without
replacement. The number of successes in a fixed number of trials is counted.
Fishman (1973) and McGrath and Irving (1973) have given details.

Fishman’s (1978) algorithm requires a search of the cdf. Kachitvichyanukul
and Schmeiser (1985) suggest ways in which the speed of the method can be
improved.

Devroye (1986) indicated in an exercise how hypergeometric rv’s can be
generated by rejection from a binomial envelope distribution.

For large-scale simulations with changing parameters, Kachitvichyanukul and
Schmeiser’s algorithm H2PE uses acceptance/rejection from an envelope con-
sisting of a uniform with exponential tails. The execution time is bounded over
the range of parameter values for which the algorithm is intended, that is, over
the range M − max(0, n − N + Np) ≥ 10, where M is the mode of the distribu-
tion. Kachitvichyanukul and Schmeiser recommended inversion of the cumulative
distribution function for other parameter values.

While the negative hypergeometric distribution could be generated by inverse
sampling without replacement for a fixed number of successes, it would seem
preferable to generate it using its beta–binomial model with the good extant beta
and binomial generators.

Similarly a hypergeometric type IV distribution could be generated as a beta
mixture of negative binomials; see Section 6.2.5.

6.7 ESTIMATION

Most papers on estimation for hypergeometric-type distributions have concen-
trated on particular distributions (e.g., beta–binomial distribution). Rodrı́guez-
Avi et al. (2003) have recently studied a variety of estimation methods for
distributions with pgf’s of the general form

G(z) = 2F1[α, β; λ; z]

2F1[α, β; λ; 1]
.
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These include (i) methods based on relations between moments and frequencies
and the observed values; (ii) the minimum χ2 procedure; and (iii) maximum
likelihood. Two applications to real data are provided.

6.7.1 Classical Hypergeometric Distribution

In one of the most common situations, inspection sampling (see Section 6.9.1),
there is a single observation of r defectives (successes!) in a sample of size n taken
from a lot of size N . Both N and n are known, and the hypergeometric parameter
Np denotes the number of defectives in a lot; an estimate of Np is required.

The maximum-likelihood estimator N̂p is the integer maximizing(
N̂p

r

)(
N − N̂p

n − r

)
(6.77)

for the observed value r . From the relationship between successive probabilities,

Pr[X = r|n, Np + 1, N ] ≷ Pr[X = r|n, Np, N ]

according as Np ≷ n−1r(N + 1) − 1. Hence N̂p is the greatest integer not exceed-
ing r(N + 1)/n; if r(N + 1)/n is an integer, then [r(N + 1)/n] − 1 and
r(N + 1)/n both maximize the likelihood. The variance of r(N + 1)/n is, from
(6.8),

(N + 1)2(N − n)p(1 − p)

n(N − 1)
.

Neyman confidence intervals for Np have been tabulated extensively, notably by
Chung and DeLury (1950) and Owen (1962), and have been used widely. Steck
and Zimmer (1968) outlined how these may be obtained; see also Guenther
(1983). Steck and Zimmer also derived Bayes confidence intervals for Np based
on various special cases of a Pólya prior distribution. They related these to
Neyman confidence intervals. It would seem that Bayes confidence intervals are
highly sensitive to choice of prior distribution.

A test of Np = a against Np = a0 is sometimes required. Guenther (1977)
discussed hypothesis testing in this context, giving numerical examples.

In the simplest capture–recapture application (again see Section 6.9.1) we
want to estimate the total size of a population N , with both n1 = Np (the number
caught on the first occasion) and n2 = n (the number caught on the second
occasion) known, given a single observation r . Here

Pr[X = r|n2, n1, N + 1] ≷ Pr[X = r|n2, n1, N ] (6.78)

according as N ≷ (n1n2/r) − 1. Hence the MLE N̂ of N is the greatest integer
not exceeding n1n2/r; if n1n2/r is an integer, then (n1n2/r) − 1 and n1n2/r

both maximize the likelihood.
The properties of the estimator N̂ have been discussed in detail by

Chapman (1951). Usually n1 + n2 ≯ N , in which case the moments of N̂ are



274 HYPERGEOMETRIC DISTRIBUTIONS

infinite. Because of the problems of bias and variability concerning N̂ , Chapman
suggested instead the use of the estimator

N∗ = (n1 + 1)(n2 + 1)

r + 1
− 1. (6.79)

He found that

E[N∗ − N ] = (n1 + 1)(n2 + 1)(N − n1)!(N − n2)!

(N + 1)!(N − n1 − n2 − 1)!
, (6.80)

which is less than 1 when N > 104 and n1n2/N > 9.2. The variance of N ∗ is
approximately

N2(m−1 + 2m−2 + 6m−3), (6.81)

and its coefficient of variation is approximately m−1/2, where m = n1n2/N .
Chapman (1951, p. 148) concluded that “sample census programs in which the
expected number of tagged members is much smaller than 10 may fail to give
even the order of magnitude of the population correctly.”

Robson and Regier (1964) discussed the choice of n1 and n2. Chapman (1948,
1951) showed how large-sample confidence intervals for N ∗ can be constructed;
see also Seber (1982b).

The estimator

N∗∗ = (n1 + 2)(n2 + 2)

r + 2
(6.82)

has also been suggested for n2 sufficiently large. Here

E(N∗∗) ≈ N(1 − m−1),

Var(N∗∗) ≈ N2(m−1 − m−2 − m−3). (6.83)

In epidemiological studies the estimation of a target population size N is quite
often achieved by merging two lists of sizes n1 and n2; see Section 9.1. Here it
is usual to have n1 + n2 > N , in which case N̂ is unbiased, and

s2 = (n1 + 1)(n2 + 1)(n1 − r)(n2 − r)

(r + 1)2(r + 2)

(where r is the number of items in common on the two lists) is an unbiased
estimator of Var(N̂) (Wittes, 1972).

6.7.2 Negative (Inverse) Hypergeometric Distribution:
Beta–Binomial Distribution

The beta–binomial distribution is the most widely used of all the general hyper-
geometric distributions. It is particularly useful for regression situations involving
binary data.
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Consider the beta–binomial parameterization

Pr[X = x] =
(−α

x

)( −β

n − x

)/(−α − β

n

)
(6.84)

from Section 6.2.2, with α, β, n > 0, n an integer. Moment and maximum-likeli-
hood estimation procedures for the parameters α and β were devised by Skellam
(1948) and Kemp and Kemp (1956b).

The moment estimators are obtained by setting

x = α̃n

α̃ + β̃
, s2 = nα̃β̃(α̃ + β̃ + n)

(α̃ + β̃)2(α̃ + β̃ + 1)
, (6.85)

that is,

α̃ = (n − x − s2/x)x

(s2/x + x/n − 1)n
, β̃ = (n − x − s2/x)(n − x)

(s2/x + x/n − 1)n
. (6.86)

Maximum-likelihood estimation is reminiscent of maximum-likelihood esti-
mation for the negative binomial distribution. Let the observed frequencies be
fx , x = 0, 1, . . . , n, and set

Ax = fx+1 + fx+2 + · · · + fn, Bx = f0 + f1 + · · · + fx;

then the total number of observations is A−1 = Bn.
The maximum-likelihood equations are

0 = F ≡
n−1∑
x=0

Ax

α̂ + x
−

n−1∑
x=0

A−1

α̂ + β̂ + x
,

0 = G ≡
n−1∑
x=0

Bx

β̂ + x
−

n−1∑
x=0

A−1

α̂ + β̂ + x
.

(6.87)

Iteration is required for their solution. Given initial estimates α1 and β1 (e.g., the
moment estimates), corresponding values of F1 and G1 can be computed; better
estimates, α2 and β2, can then be obtained by solving the simultaneous linear
equations

F1 = (α2 − α1)

n−1∑
x=0

Ax

(α1 + x)2
− (α2 − α1 + β2 − β1)

n−1∑
x=0

A−1

(α1 + β1 + x)2
,

G1 = (β2 − β1)

n−1∑
x=0

Bx

(β1 + x)2
− (α2 − α1 + β2 − β1)

n−1∑
x=0

A−1

(α1 + β1 + x)2
.

(6.88)
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The next cycle is then begun by calculating F2 and G2. Kemp and Kemp (1956b,
p. 174) reported that “on average about five cycles were needed to stabilize the
estimates to three decimal places.”

Chatfield and Goodhardt (1970) put forward an estimation method based on
the mean and zero frequency. For highly J-shaped distributions (e.g., distributions
of numbers of items purchased) this method has good efficiency; however, it does
require iteration.

Griffiths (1973) remarked that the MLEs can be obtained by the use of a com-
puter algorithm to maximize the log-likelihood. Williams (1975), like Griffiths,
considered it advantageous to reparameterize, taking π = α/(α + β) (the mean
of the beta distribution) and θ = 1/(α + β) (a shape parameter). Williams was
hopeful that convergence of a likelihood maximization algorithm would be more
rapid with this parameterization.

Qu et al. (1990) pointed out that α > 0, β > 0, that is, θ > 0, gives the
beta–binomial distribution, while α < 0, β < 0, that is, θ < 0, gives the hyper-
geometric distribution. When α → ∞, β → ∞, that is, θ → 0, the distribution
tends to the binomial. Hence maximum-likelihood estimation with this parame-
terization enables an appropriate distribution from within this group to be fitted
to data without assuming one particular distribution. Qu et al. also proposed
methods of testing H0 : θ = 0 using (1) a Wald statistic and (2) the likelihood
ratio. He showed how the homogeneity of the parameters can be tested using the
deviance.

Bowman, Kastenbaum, and Shenton (1992) have shown that the joint effi-
ciency for the method of moments estimation of α and β is very high over much
of the parameter space. Series were derived for the first four moments of the
moment estimators; simulation approaches were used for validation.

Various methods of estimation for the beta–binomial and zero-truncated beta–
binomial distributions are explored in Tripathi, Gupta, and Gurland (1994). They
are compared with maximum likelihood on the basis of asymptotic relative effi-
ciency. Examples of their use and recommendations are provided.

Moment and maximum-likelihood estimation for the case where all three
parameters α, β, and n are unknown was discussed in outline by Kemp and
Kemp (1956b).

6.7.3 Beta–Pascal Distribution

Dubey (1966a) studied estimation for the beta–Pascal distribution assuming that
k is known.

Given the beta–Pascal distribution with parameterization

Pr[X = y] =
∫ 1

0

(
y − 1

k − 1

)
(1 − λ)kλy−k

× λ�−1(1 − λ)m−1 dλ

B(�, m)
, y = k, k + 1, . . . , (6.89)
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the mean and variance are

µ = k + k�

m − 1
= k(� + m − 1)

m − 1
, provided that m > 1,

µ2 = k�(k + m − 1)(� + m − 1)

(m − 1)2(m − 2)
, provided that m > 2

(6.90)

(note that the support is k, k + 1, . . .). Hence the moment estimates are

m̃ = 2 + x(x − k)(k + 1)

(s2k − x2 + kx)
, �̃ = (m̃ − 1)(x − k)

k
. (6.91)

Dubey also discussed maximum-likelihood estimation (assuming that k is
known). There are close parallels with maximum-likelihood estimation for the
beta–binomial distribution. Irwin (1975b) described briefly maximum-likelihood
estimation procedures for the three-parameter generalized Waring distribution
(i.e., k unknown).

6.8 CHARACTERIZATIONS

There are several characterizations for hypergeometric-type distributions.
Patil and Seshadri’s (1964) very general result for discrete distributions has

the following corollaries:

1. Iff the conditional distribution of X given X + Y is hypergeometric with
parameters a and b, then X and Y have binomial distributions with param-
eters of the form (a, θ) and (b, θ), respectively.

2. Iff the conditional distribution of X given X + Y is negative hypergeo-
metric with parameters α and β for all values of X + Y , then X and Y

have negative binomial distributions with parameters of the form (α, θ)

and (β, θ), respectively.

Further details are in Kagan, Linnik, and Rao (1973).
Consider now a family of N + 1 distributions indexed by j = 0, 1, . . . , N ,

each supported on a subset of {0, 1, . . . , n}, n ≤ N . Skibinsky (1970) showed
that this is the hypergeometric family with parameters N , n, j iff for each θ ,
0 ≤ θ ≤ 1, the mixture of the family with binomial (N, θ) mixing distribution
is the binomial (n, θ) distribution. Skibinsky restated this characterization as
follows: Let h0, h1, . . . , hN denote N + 1 functions on {0, 1, . . . , n}; then

hj (i) =
(

j

i

)(
N − j

n − i

)/(
N

n

)
, (6.92)

i = 0, 1, . . . , n, j = 0, 1, . . . , N , iff the hi are independent of θ and

N∑
j=0

hjb(j ; N, θ) = b(·; n, θ), 0 ≤ θ ≤ 1, (6.93)


