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Normal Distributions 

1 DEFINITION AND TABLES 

A random variable X is normally distributed if it has the probability density 
function: 

The probability density function of U = ( X  - ,$)/a is 

which does not depend on the parameters 6, a. This is called the standard 
form of normal distribution. (It is also the standardized form.) The random 
variable U is called a standard, or unit, normal variable. 

Since 

such probabilities can be evaluated from tables of the cumulative distribution 
function of U,  which is 

The notation @(.) is widely used, so it will be used in this book. Further it is 
convenient to have a systematic notation for the quantiles of the distribution 
of U. We use the system defined by 



DEFINITION AND TABLES 81 

so that U, -, is the upper 100a% point, and U, ( = - Ul-,) is the lower 
100a% point of the distribution. 

There are other forms of notation that are much less frequently encoun- 
tered in statistical work. The parameter in (13.1) is sometimes replaced by 
the precGion modulus 

Other functions are 

(erf is the error function, or Cramp function, and erfc the error function 
complement). Other names for the distribution are second law of Laplace, 
Laplace, Gaussian, Laplace-Gauss, de Moivre; @ ( a )  is also called the 
Laplace-Gauss integral, or simply the probability integral, and erff.) is also 
known by this last name and is sometimes called the error integral. 

Tables relating to the unit normal distribution are a necessary ingredient 
of any textbook in statistical theory or its applications. This is because for 
many decades the normal distribution held a central position in statistics. As 
pointed out, tables of the unit normal distribution suffice for calculations 
relating to all normal distributions. Some care is necessary in using these 
tables; for example, putting 

it is necessary to remember the multiplier u-' in 

But no real difficulties are presented by the extended use of tables of the unit 
normal distribution. [The symbols cp(x), +(XI are often used in place of 
Z(x1.1 

In most of the tables only positive values of the variable are given. This is 
all that is necessary, since 

Z ( x )  = Z( -x) and @(x)  = 1 - @( -x). (13.8) 

Here we give a list of only the more easily available tables. Fuller lists are 
given in the National Bureau of Standards (1952) (up to 1952) and Green- 
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wood and Hartley (1962) (up to 1958). The functions most often tabulated 
are @(x), Z(x) ,  and U,, but there are many variants for special uses. 

Pearson and Hartley (1948) give tables based on values originally com- 
puted by Sheppard (1903, 1907). These contain 

1. @ ( X I  and Z ( x )  to 7 decimal places for x = 0.00(0.01)4.50; and to 10 
decimal places for x = 4.50(0.01)6.00. 

2. Ua to 4 decimal places for a = 0.501(0.001)0.980(0.0001)0.9999. 
3. Z(Ua) to 5 decimal places for a = 0.500(0.001)0.999. 

Pearson and Hartley (1970) have also provided these tables. 
Fisher and Yates (1963) give U, to 6 decimal places for a = 

0.505(0.005)0.995, and to 5 decimal places for 1 - a = 0.0'1 [ r  = 2(1)8]. 
These tables include values of "probits"-(5 + U,)-to 4 decimal places for 
a = 0.001(0.001)0.980(0.0001)0.9999 and of Z(u)  to 4 decimal places for 
u = 0.00(0.01)3.00(0.1)3.9. 

Owen (1962) gives Z ( x )  and @(x)  to 6 decimal places, z(')(x), z(*)(x), 
zc3)(x), and (1 - @ ( x ) ] / Z ( x )  to 5 decimal places, and @(x) /Z (x )  to 4 
decimal places, for x = 0.00(0.01)3.99; also (1 - @(x)] to 5 significance 
figures for x = 3.0(0.1)6.0(0.2)10.0(1)20(10)100(25)200(50)500, and U, and 
Z(Ua) to 5 decimal places for a = 0.500(0.001)0.900(0.005)0.990. 

Kelley (1948) gives U, to 8 decimal places for a = 0.5000(0.0001)0.9999. 
Hald (1952) gives Z ( x )  and @(x)  to 4 significant figures for 

and probits (5 + Ua) to 3 decimal places for 

We next describe some tables containing larger number of decimal places, 
useful for special calculations. 

In Zelen and Severo (1964) there are tables of Z(x) ,  @(x)  and z(')(x) to 
15 decimal places, z ( ~ ) ( x )  to 10, and Z(')(x) ( r  = 3,4,5,6) to 8 decimal 
places for x = 0.00(0.02)3.00. For the values x = 3.00(0.05)5.00, @(x) is 
given to 10 decimal places, Z ( x )  to 10 significant figures, and z(')(x) 
( r  = 2,. . . ,6) to 8 significant figures. A further table gives ZCr) (x )  ( r  = 

7,. . . ,12) to 8 significant figures for x = 0.0(0.1)5.0. There are also tables 
[based on Kelley (1948)l of Ua and Z(Ua) to 5 decimal places for a = 

0.500(0.001)0.99, and of Ua to 5 decimal places for a = 0.9750(0.0001)0.9999. 
In the National Bureau of Standards tables (1953) there are given tables of 

Z ( x )  and 2@(x) - 1 [= erf(x/ a)] to 15 decimal places for x = 

0(0.0001)1.0000(0.001)7.800; and also of 2[1 - @(x)] to 7 significant figures 
for x = 6.00(0.01)10.00. 
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Table 13.1 Percentile Points of Normal Distribution, 
as Standardized Deviates (Values of U,) 

a 'a 

present. The probable error of distribution (1) is, of course, 
U0.75u. 

0.995 
0.9975 
0.999 

There are many other publications containing various forms of tables of 
the normal distribution. Further tables of special functions associated with 
the normal distribution are used in connection with probit analysis. There is 
no need for extensive tables of the normal distribution to be given here. We 
confine ourselves, in Table 13.1, to a few commonly used values of Ua. 

Tables of random unit normal deviates (representing values of a random 
variable having a unit normal distribution) have been constructed from tables 
of random numbers (representing values of a random variable having a 
discrete rectangular distribution over the integers 0-9). In 1948 Wold (1948) 
published a set of 25,000 random unit normal deviates (to 3 decimal places), 
based on Kendall and Babington Smith's (1942) tables of random numbers. A 
set of 10,400 random unit normal deviates (also to 3 decimal places), based 
on Tippett's (1927) table of random numbers, was published by Sengupta and 
Bhattacharya (1958). These replaced an earlier set of tables, first appearing 
in 1936 [Mahalanobis et al. (193411 which were found to contain a number of 
errors. 

A set of 100,000 random unit normal deviates, to 3 decimal places, based 
on the first half-million random numbers produced in 1947, was published by 
RAND (1955). In Buslenko et al. (1966) there is a table of 1000 random unit 
normal deviates, to 4 decimal places. These were calculated from the values 
of five independent random variables R,, . . . , R, each randomly distributed 

2.575829 
2.807034 
3.090232 

"The value of Uo,, (= 0.6745), the upper quartile of the unit 
normal distribution, is occasionally called the probable error of 
the distribution, though this nomenclature is seldom used at 
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over the range 0 to 1 (see Chapter 26), using the formulas 

U = X - O.Ol(3X - x 3 ) ,  

where 

[This formula was suggested by Bol'shev (1959). Note that f i ( 2 ~ ~  - 1) has a 
standardized rectangular distribution.] 

2 HISTORICAL REMARKS 

Because of the importance of the normal distribution, considerable attention 
has been paid to its historical development. The earliest workers regarded 
the distribution only as a convenient approximation to the binomial distribu- 
tion. At the beginning of the nineteenth century appreciation of its broader 
theoretical importance spread with the work of Laplace and Gauss. The 
normal distribution became widely and uncritically accepted as the basis of 
much practical statistical work, particularly in astronomy. Around the begin- 
ning of the present century, a more critical spirit developed with more 
attention being paid to systems of "skew (nonnormal) frequency curves" (see 
Chapter 12). This critical spirit has persisted, but it is offset by developments 
in both theory and practice. The normal distribution has a unique position in 
probability theory, and it can be used as an approximation to other distribu- 
tions. In practice, "normal theory" can frequently be applied, with small risk 
of serious error, when substantially nonnormal distributions correspond more 
closely to observed values. This allows us to take advantage of the elegant 
nature and extensive supporting numerical tables of normal theory. 

The earliest published derivation of the normal distribution (as an approx- 
imation to a binomial distribution) seems to be that in a pamphlet of 
de Moivre dated 12 November 1733. This pamphlet was in Latin; in 1738 
de Moivre published an English translation, with some additions. [See also 
Archibald (1926) and Daw (1966).] 

In 1774 Laplace obtained the normal distribution as an approximation to 
hypergeometric distribution, and four years later he advocated tabulation of 
the probability integral [@(XI, in our notation]. The work of Gauss in 1809 
and 1816 established techniques based on the normal distribution, which 
became standard methods used during the nineteenth century. 

Most theoretical arguments for the use of the normal distribution are 
based on forms of central limit theorems. These theorems state conditions 
under which the distribution of standardized sums of random variables tends 
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to a unit normal distribution as the number of variables in the sum increases, 
that is, with conditions sufficient to ensure an asymptotic unit normal 
distribution. Gauss's (1816) derivation of the normal distribution, as the 
resultant of a large number of additive independent errors, may be regarded 
as one of the earliest results of this kind. 

Formal rigorous mathematical discussion of central limit theorems (for 
independent random variables) may be said to start with the work of 
Lyapunov (1900). A useful theorem associated with his name states that if 
XI, X2, . . . , X,, are independent, identically distributed random variables 
with finite mean and standard deviation then the distribution of the standard- 
ized sum 

tends to the unit normal distribution as n tends to infinity. Lyapunov also 
obtained an upper bound for the magnitude of the difference between the 
cumulative distribution functions of the standardized sum and the unit 
normal. This upper bound was of the form Cn-'I2 log n, where C is a 
constant depending on the variances and third moments of the Xi's. It has 
subsequently been considerably improved by Cram& (1928), Berry (1941), 
Esseen (19421, Zahl (19661, and Zolotarev (1967). For the case when the 
variables {Xi} are identically distributed the upper bound obtained by 
Zolotarev (1967) is 

where 

This result was an improvement on an earlier result of Wallace (1959) 
[correcting a result of Berry (1941)l. Zahl (1966) has shown that the upper 
bound 

can be obtained, provided v3 /a3  2 3/ a = 2.22. 
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It can be shown by consideration of particular cases that the upper bound 
must be at least 

with 

Zolotarev (1967) has shown that if the variance and absolute third central 
moment of Xj are ai2, u,~,  respectively ( j  = 1,2,. . . , n), then an upper bound 
for the magnitude of the difference between cumulative distribution func- 
tions is 

For the general case of independent (but not necessarily identically 
distributed) variables, Lindeberg (1922) showed that putting Var(Xi) = ui2 
and 

for all t > 0, the distribution of the standardized sum 

tends to the unit normal distribution as n tends to infinity. The necessity of 
Lindeberg's condition was established by Feller (1935). Since then attention 
has moved to consideration of conditions under which a limiting normal 
distribution applies to sums of nonindependent random variables. An ac- 
count of some such conditions can be found in a book by L o b e  (1963). 

A comprehensive account of the central limit theorem and related prob- 
lems (up to the early 1950s) has been given by Gnedenko and Kolmogorov 
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(1954). Multidimensional extensions of central limit theorems have been 
investigated by Bergstrom (1943, Esseen (1958), Sadikova (1966), and Sazanov 
(1967) among others. 

Porter (1989, while discussing the historical details of the concepts of 
variation and error in Quetelet's statistics, has brought out the vital role that 
the normal distribution plays in the mathematics of society. Wilf (1988) has 
commented briefly on the general quest for normality. Read (1985) has 
provided a fine review of the various important developments on the normal 
distribution. Stigler (1982) has proposed a new standard for the normal 
distribution. 

As one would expect, there has been a phenomenal development on 
various aspects of the normal distribution. Consequently several books and 
monographs have appeared dealing specifically with inference, characteriza- 
tions, tolerance limits, prediction, goodness-of-fit, and so on. It is therefore 
neither feasible nor necessary to discuss all these developments in detail. 
Fortunately there is a handbook prepared by Patel and Read (1981) available 
on the distribution; the second edition of this book is currently under 
preparation. We are hopeful and confident that this volume will provide a 
comprehensive treatment to the distribution, and hence we have concen- 
trated on adding only those results that are primarily of distributional nature . 
(rather than specific inferential aspect). We refer the readers to the above- 
mentioned handbook and other books/monographs (listed for specific topics) 
for an elaborate discussion. 

3 MOMENTS AND OTHER PROPERTIES 

If U has the unit normal distribution, then, since the distribution is symmet- 
rical about U = 0, 

and so 

If r is odd, 
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If r is even, 

Hence 

This, as pointed out in Section 1, reveals that the unit normal is also the 
standardized normal distribution. If X has the genera1 normal distribution 
(13.0, then 

where U is a unit normal variable. 
Some normal probability density functions are shown in Figure 13.1. The 

nine curves shown correspond to all possible combinations of 6 = - 1, 0, 1 
and a = +,I ,  2. The curve in the center represents the unit normal distribu- 
tion (6 = 0, a = 1). The distribution is symmetrical about X = 6; the proba- 
bility density function has points of inflexion at X = 6 * a. The distribution 
is unimodal with mode at X = 6 (which is also the median of the distribu- 
tion). The modal value of the probability density function is (fi)-' = 

0.3979. 
The moment generating function of X (= 6 + a U )  is 

: and the characteristic function is ei'5-(t2u2/2).  For all r > 2, the cumulants K ,  
I are zero. This property characterizes normal distributions. 



Expected Value (t) 
m 
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The mean deviation of X is u r n  = 0.798~. For all normal distribu- 
tions 

Mean deviation 

Standard deviation 
= = 0.798. (13.14) 

The information-generating function of X is 

The entropy is 

It is of some interest to note that the probability density function (13.1) 
can be expressed in the numerical form 

The derivatives of the function Z ( . )  are also of some interest. They are used, 
for example, in the Gram-Charlier expansion (see Chapter 12). We have 
already discussed them in Chapter 1, and Section 1 of Chapter 12 contains 
some references to tables of their numerical values. 

If XI, X,, . . . , Xn are independent, normally distributed random variables, 
then any linear function of these variables is also normally distributed. It is of 
interest to note that if XI and X2 are independent, and each is normally 
distributed with zero expected value, then x,x,(x: + X:)-'/' is also 
normally distributed. If further var(Xl) = var(X2), then (x: - x:)/(X; + 
x i )  is also normally distributed [Shepp (1964)l. 

If XI, X2, . . . , Xn are independent random variables each distributed as 
(13.1), then by applying the transformation 

= Z + (I  . ~)-'/'u,u+ (2 - ~ ) - ' / ' u ~ u  + . - - + [(n - I.)~]-~"u,u, 
- (1  . 2 ) - 1 / 2 ~ 2 u +  (2 . 3)-'l2u3u + - .  . + [(n - l )n]  -'/'u,u, 

- 2(2 3 ) - 1 / 2 ~ 3 u +  . - + [(n - l )n ]  - 1 / 2 ~ n u ,  

- (n - 1) [(n - l )n ]  - ' / 2 ~ n u ,  

(13.18) 

i it can be shown that 

i 1. f (= n-lZy=lXj) has a normal distribution with expected value 5 and 
standard deviation a/ 6. 
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2, Each U, ( j  = 2,. . . , n) is a unit normal variable. 
3, x ,  U,, . . . , U, are a mutually independent set of variables, and hence 
4. Ci",l(Xj - zl2 = u2Cy=2142 is distributed as u 2  with (n - 1) 

degrees of freedom). 

This last result was obtained by Helmert in 1875-76. The transformation 
(13.18) is called Helmert 's transformation. 

Since any function 

g(xl - x , .  . . , x,, - Z) 

of the deviations {Xi - X} alone is a function of {U,) alone, we further note 
that by (13.18) and by property 3, 

5. X and any function g(X, - x ,  . . . , Xn - X) are mutually independent. 

This result is helpful in calculating moments and distributions of statistics 
such as z [ ~ a n ~ e ( ~ , ,  ..., X ~ ) ] - ~ ; X [ ~ - ~ C ~ _ , ~ X ~   XI]-^. It can also be 
shown that 

6. Ci"_,(Xj - 8), and any function of the ratios 

are mutually independent. 

Zehna (1991) has recently given a simple proof for the result that 3 and 
S2  are statistically independent. Bondesson (1981) discussed a normal sample 
with given sample mean and variance. Szekely (1985) established the multi- 
plicative infinite divisibility of a standard normal distribution, while Chernoff 
(1981) presented an inequality involving the normal distribution function. 
Berg (1988) showed that the distribution of the cube (or, indeed, any odd 
power) of a normal random variable is not determined by its moments. 

Hawkins (1975) has made a comment on the computation of noncentral t 
and normal integrals. Hawkins and Wixley (1986) have made some observa- 
tions on the transformation of chi-squared variables to the normal distribu- 
tion (see also Chapter 18). Aroian, Taneja, and Cornwell (1978) have derived 
the mathematical forms of the distribution of the product of two normal 
variables, while Cornwell, Aroian, and Taneja (1977) have discussed the 
numerical evaluation of that distribution. Hayya, Armstrong, and Gressis 
(1975) have considered the distribution of the ratio of two normal variables. 
Karhunen and Narula (1989) have similarly derived the distribution of the 
ratio of the absolute values of two normal variables. Anscombe and Glynn 
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and when n = 4, 

A general approach, given by Godwin (1949a), is to express the product 
moments in terms of integrals of the form 

where Q(xl, . . . , x,) is a quadratic form in the xi's. For n = 1,2,3, J,, can be 
expressed explicitly in terms of elementary functions as follows: 

i n -  
n = 1, Q(xl)  = allx:, J1 = -, 

2a11 

where 

+ tan-' 
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The values of means of order statistics have been tabulated to five decimal 
places by Harter (1961a) for n  = 2(1)100(25)250(50)400, and also by Harter 
(1970) for some more choices of n. The mean and variance of the ith 
quasi-range have been tabulated by Harter (1959) for n  up to 100. Tippett 
(1925) has computed the expected value of the sample range for n  I 1000, 
while Harter (1960) presented tables of the mean, variance, and the coeffi- 
cients of skewness and kurtosis for n I 100. Teichroew (1956) has presented 
tables of means and product moments of order statistics for sample sizes up 
to 20. By making use of Teichroew's tables, Sarhan and Greenberg (1962) 
have tabulated the variances and covariances of order statistics (to 10 
decimal places) for n  I 20. These tables have been extended by Tietjen et al. 
(1977) for sample sizes up to 50. The values of the mean and standard 
deviation of order statistics prepared by Yamauti (1972) for sample sizes up 
to 50 are contained in the tables of Tietjen et al. (1977). For the largest order 
statistic Xi, Ruben (1954) has tabulated the first ten moments for n  1 5 0  
and Borenius (1965) has presented the first two moments for n  1 120. 
Parrish (1992a, b) has presented tables of means, variances and covariances 
of order statistics (up to 25 decimal places) for some selected sample sizes up 
to 50. Miyakawa, Tamiya, and Kotani (1985a) have discussed the numerical 
evaluation of moments of order statistics through an orthogonal inverse 
expansion. 0ztiirk and Aly (1991) have proposed some simple approxima- 
tions for the moments of order statistics. 

Royston (1982) has given an algorithm for computing the expected values 
of normal order statistics. This algorithm will compute and present the exact 
values for sample sizes up to 1000 and will also present an approximate value 
for the quantity for larger sample sizes [see Koeniger (1983) for an additional 
remark on this algorithm]. Balakrishnan (1984) has presented an algorithm, 
based on an orthogonal inverse expansion, to approximate the sum of squares 
of normal scores, namely S = Cy=l{~[X,1]}2. This quantity arises often in 
nonparametric statistics. Dansie (1986) described the normal order statistics 
as permutation probability models, while Nelson (1983) discussed the useful- 
ness of normal scores as a transformation. 

For the standard normal distribution, an interesting property satisfied by 
order statistics is that 

~ E [ x , ' x ~ ]  = x Cov(X, ' ,Xj)=l,  i n .  (13.22) 
j=  1 j =  1 
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That is, every row (or column) of the product-moment matrix or the 
variance-covariance matrix adds up to 1. This follows easily from the fact that 
x and Xi' - x are statistically independent. Some relationships between 
moments of order statistics have also been established by various authors, 
and almost all of them have been derived by exploiting the characterizing 
differential equation Z(')(x) = -xZ(x). For example, Govindarajulu (1963) 
has shown that for 1 s i I n, 

n- i  
n - 1 1 

E[x;"] = 1 + n ( i  - ) ( - I ) ' ( ~  ' ) G ~ [ ~ ~ , i + j ~ ~ : i + j l .  (13.23) 
1 j=,, 

If we set i = n in (13.23), we obtain the relation 

The results in (13.22), (13.23), and (13.24) have been used for checking the 
computation of the product moments. Furthermore Davis and Stephens 
(1977, 1978) have applied (13.22) and (13.24) to improve the David-Johnson 
approximation of the variance-covariance matrix (see Chapter 12). Reference 

j may also be made to Shea and Scallon (1988) for further remarks in this 
j regard. 
i By noting that the condition z(')(x) = -xZ(x) is satisfied by both the 

standard normal and the half-normal (see Section 10) distributions, Joshi and 1 Balakrishnan (1981) established the following results satisfied by order statis- 
i 

tics from both these distributions: 

n n 

E[X,'X~] = 1 + CE[X, ' -~X~]  for 1 5 i I n, (13.25) 
j=i  j = i  

x E[x,'x,!] = 1 + nEIX; , l ]EIX~-l ,n- l ]  for 1 I i I n, (13.27) 
j=  1 

and 

n 

Cov(X,l, Xi) = 1 - ( n  - i + ~)E[x;,,]{E[x,~] - E[x,'-,I] 
j -  1 

for 1 5 i I; n. (13.28) 
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Joshi and Balakrishnan (1981) have used these relations to derive a conve- 
nient expression for the variance of the selection differential or reach 
statistic, defined as A, = zk - f ,  where xk is the average of the k largest 
order statistics, XA-,+,, . . . , XA. For example, Joshi and Balakrishnan (1981) 
have shown that 

Consequently the mean and variance of xk (and hence of A,) can be 
determined from the first two raw moments of X,! alone. These quantities 
have been tabulated for sample sizes up to 50 by Joshi and Balakrishnan 
(1981). Some properties of f, have also been discussed by Schaeffer, van 
Vleck, and Velasco (1970) and Burrows (1972, 1975). In particular, they 
observed that k var(X,) remains almost constant for the selected fraction 
k / n .  While Schaeffer, van Vleck, and Velasco (1970) tabulated the values of 
k ~ a r ( X , )  for n  5 20 and all choices of k, Burrows (1972, 1975) provided 
approximations to E[X,]  and k var(F,) for large values of n. But, Joshi and 

' 

Balakrishnan (1981) have pointed out that Burrows' approximation for 
k  ~ a r ( X , )  is not satisfactory for small values of k even when n  is 50, and 
that the approximation improves when k increases. The statistic A, is 
related to Murphy's test statistic for outliers; for details, see Hawkins (1980) 
and Barnett and Lewis (1994). 

The cumulative distribution function of the extreme XL was tabulated by 
Tippett (1925) for n  = 3,5,10,20,30,50,100(100)1000. Percentage points for 
n  1 3 0  were given by Pearson and Hartley (19701, and the cumulative 
distribution function of XA was tabulated by Pearson and Hartley (1972), to 7 
decimal places, for n  = 3(1)25(5)60, 100(100)1000 and for x in steps of 0.1. 
Gupta (1961) and Govindarajulu and Hubacker (1964) have presented per- 
centage points of all order statistics for n  < 10 and n  1 30, respectively. 
Eisenhart, Deming, and Martin (1963) have tabulated percentage points of 
the sample median. Pearson and Hartley (1942, 1970) have provided tables 
for the distribution function of the sample range XA - Xi. Harter and 
Clemm (1959) have given extensive tables of the cumulative distribution 
function (to 8 decimal places) and also of the percentage points (to 6 decimal 
places) of the range for n = 2(1)20(2)40(10)100 and the argument in steps of 
0.01, and 23 different percentage points for each n, respectively. Besides 
reproducing these tables, Harter (1970) has presented tables of the probabil- 
ity density function of the sample range (to 8 decimal places) for n  up to 16 
and the argument in steps of 0.01. The cumulative distribution function of 
the ith quasi-range, X;-,+, - Xi', is presented by Harter (1970) to 8 decimal 
places for n  = 2(1)20(2)40(10)100, i = 1,2,. . . ,9, and the argument in steps 
of 0.05. Harter (1970) has also presented tables of corresponding percentage 
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points to 6 decimal places. Currie (1980) has discussed the distribution of the 
studentized range. An algorithm for calculating the probability integral of the 
sample range has been presented by Barnard (1978); see El Lozy (1982) for 
some additional remarks on this computational algorithm. 

David, Kennedy, and Knight (1977) have provided tables of means, vari- 
ances, and covariances of order statistics arising from a standard normal 
sample with one outlier. These values are presented for all n up to 20, for 
the two cases: (1) location-outlier, the outlier being N(A, 1) for A = 0(0.5)3, 
4; and (2) scale-outlier, the outlier being N(O,T') for T = 0.5,2,3,4. These 
tables have since been used in many robustness studies because they can be 
utilized to determine exactly the bias and the mean square error of any linear 
estimator when there is a single outlier present in the sample. 

In addition to the numerous tables listed here, there are also several 
tables pertaining tests for outliers. The recently published third edition of 
Barnett and Lewis (1994) provides a complete list of all the available tables. 

5 RECORD VALUES 

Let Xu(,,, Xu(,,, . . . be the upper record values arising from a sequence {Xi) 
of i.i.d. standard normal variables. That is, with To = 0 and 

denoting the upper record times, the record value sequence {Xu(,$=, is 
defined by Xu(,, = XT n - , ,  n = 1,2,. . . . Then the density of Xu(,, is 

and the joint density of Xu(,, and Xu(,, is given by 

x ( -log(l - @( y)) + log(1 - ~ ( x ) ) } " - ~ - '  Z ( Y ) ,  

- m < x < y < m , l s m < n .  (13.31) 

From (13.30) and (13.31), Houchens (1984) and Balakrishnan and Chan 
(1994) have determined (by numerical methods) the values of E[Xu(,,], 
Var(X,(,,), and Cov(Xu(,,, Xu(,,). By making use of these values, these 
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authors have also derived the best linear unbiased estimators of 5 and a 
based on the first n upper record values. Balakrishnan and Chan (1994) have 
also discussed the prediction of a future record and a test for spuriosity of a 
current record value. They have also established that 

and consequently that 

Suppose that XLt12, XL(,,, . . . , denote the lower record values arising from 
a sequence {Xi} of 1.i.d. standard normal variables; that is, with T,* = 1 and 

denoting the lower record times, the lower record value sequence {XL(,$=, 
is defined by XL(,). = XT2-,, n = 1,2,. . . . Then, due to the symmetry of the 
standard normal distribution, it may be easily observed that 

With this property, moments of the lower record values (and inference based 
on the lower record values) can be easily obtained from the corresponding 
results for the upper record values. 

6 CHARACTERIZATIONS 

We first summarize normal characterizations presented in the first edition of 
this book [Johnson and Kotz (197011. In all cases X,, . . . , X,, are i.i.d. random 
variables, unless explicitly stated otherwise. 

1. X = n-'Cj",,Xj has a normal distribution. [See Chapter 12, Section 6. 
Janson (1988) expresses this in the form dk4,(t)/dt I,_, = 0 for a11 
k > 2, where 4,(t) is the characteristic function of the common 
distribution of the X's.] 

A more sophisticated characterization based on properties of is 
due to Fieger (1971). If the distribution of the X's belongs to a location 
family, with Fx(x) = g(x - 8), if EIJXiI] is finite, and if X is the best 
translation invariant estimator of 8 for any convex loss function 
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W(6*, 6) = W(l6* - 61) with W(u) 2 W(0) for all u, then the common 
distribution is normal. 

2. X and g({Xi - Xi), i + j) mutually independent, given one of three 
conditions: 
a. g ( - )  = C;=,(Xj - X)2 (= nS). [Lukacs (1942); weakened to z and 

S which have joint pdf of form h ( 2 ,  s)s"-~, with ah/ax and 
ah/aS existing, by Kaplansky (1943).] 

b. g(.) is a k-statistic [i.e., g(.) is a polynomial in the X's and 
E[g(.)] = K,,  which is the rth cumulant of the common distribution 
of the X's for some integer r > 21. [Basu and Laha (1954); Lukacs 
(1955). See also Geary (1936) and Kawata and Sakamoto (1949).] 

c. g(- )  = 0 if and only if Xj z for all j; and 

[Paskevich (1958), Rao (19581, Zinger (195811. 
3. Conditions on conditional expected values: 

a. E [ ~ ( ( x ,  - Xi), i # j] = E[X] (for n > 2) [Kagan, Linnik, and Rao 
(1965, 1973)l. Note that for n = 3, this condition is satisfied by any 
symmetric distribution with finite expected value. Rao (1967) ex- 
tended this condition to 

E[X~IX, - = ~ ( 8 1  for all i # j. 

b. The common distribution has zero mean and finite variance, and 
there exist (n - 1) linearly independent statistics E;. = Cy=lajiXi 
( j =  1, ..., n - 1)such that 

E E;. biXi = 0 for a j = 1 , n  - 1 (13.34) [ i 1 
and some (bi) ({aj1, . . . , ajn) not all zero). Kagan, Linnik, and Rae 
(1973, p. 156) improve this result by requiring only j = 1 in (13.34) 
and not finite variance, but restricted to n 2 3. [Cacoullos (1967b)l. 

c. C;_lajbj = 0, where a j  # 0 ( j  = 1,. . . , n), (bj) are not all zero, and 

[Cacoullos (1967a)l. 
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4. Conditions based on identity of distributions: 
a. C7=,ajX, (a, # 0, j = 1,. . . , n) and each Xi (i = 1,. . . , n) for some 

(a,) [Shimizu (1962), referring to Linnik (1952)l. 
b. C,", ,ajXj and C;= ,b,Xj, where ajbj # 0 (for all j), and {b,) is not 

just a rearrangement of (a,), provided the common distribution has 
finite moments of all order [Marcinkiewicz (1939)l. [Linnik (1952) 
showed that this result is not valid if some moments are infinite.] 

c. (n = 2) of X, and (XI + X2)/ fi [Pblya (1923), referred to by Bryc 
(199011. 

5. Characterizations based on order statistics [Govindarajulu (196611: 
a. Provided the common distribution has a finite variance, the condi- 

tion 

ensure that the common distribution is either normal (with variance 
u 2 )  or truncated (from above) normal. 

b. If the expected value of the common distribution is zero, the 
condition 

ensures that the common distribution is normal. [Note that if it be 
assumed that the common distribution has zero probability for 
negative values, condition (13.35) ensures that it is half-normal (see 
Section lo).] 

6. Conditions based on distributions of specific statistics: 
a. Ci", , X; and {xi2/(C7= ,X;)) (i = 1, . . . , n) are mutually indepen- 

dent [Tamhankar (1967)l. 
b. The distribution of Cj"=,(X, + aj)2 depends on the pnv~af~ltAters (aj} 

only through C7,,a; [Kagan and Shalayevskii (196711. 
c. Provided that ajb, + 0 ( j  = 1,. . . , n), C7,,ajX, and C7,,bjXj are 

mutually independent for some {a,, b,). [Darrnois (1950, Skitovich 
(1953). The result is known as the Damtois-Skitouich theorem. An- 
other proof was given by TranquilIi (1968).1 

This condition and the following one do not require assumption 
of finite variance-or indeed, identity of distributions of XI,. . . , X,, 
-though mutual independence is still a necessary property. 

d. Extending condition 1 to cases of not necessarily identically dis- 
tributed variables, if (XI + X2) has a normal distribution, so do each 
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of XI and X,. [CramCr (1936), extended to n > 2 random variables 
by Lukacs (1956).1 

e. If each Xj is distributed symmetrically about zero, the condition that 
the statistics 

are mutually independent and distributed as t with j - 1 degrees of 
freedom ( j  = 2,. . . , n) is necessary and sufficient to ensure that 
each Xj has the same normal distribution [Kotlarski (196611. 

Books by Kagan, Linnik, and Rao (1973) and Mathai and Pederzoli (19771, 
as well as a survey by Kotz (1974), provide a useful, and reasonably adequate, 
basis for more mathematically inclined readers desiring to understand deriva- 
tions of the above results. Ghurye and Olkin (1973) include a clear exposition 
of the work of P6lya (1923) and Linnik (1953), and they illustrate the 
application of Linnik's results. 

In the two decades following publication of the first edition of this book, 
there has been substantial growth in literature on characterizations, in which 
characterization of normal distributions has played a prominent part. In fact, 
to some extent, characterization of normal distributions has become a branch 
of mathematics, with emphasis on functional equations and characteristic 
functions but with only limited impact on applied statistics. We are unable to 
provide a comprehensive, or even fully representative, account due in part to 
space restriction but also to our feeling that a sizable proportion of the more 
recent results are of little value in applied work. Exploitation of earlier 
results has not occurred to the extent that one might have expected, or hoped 
for. This is true even for results of type 2 above (p. 101). 

A possible exception is the following characterization initially due to 
Csorgo and Seshadri (1971) and Csorgo, Seshadri, and Yalovsky (1975). It 
was used to develop tests of normality. An early version is as follows: Given 
XI,. . . , X, (n = 2k + 3, k 2 2) which are i.i.d. with expected value ( and 
variance u2,  and 
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and given 

and the statistics 

which have the joint distribution of order statistics for k mutually indepen- 
dent standard uniform variables, then the common distribution of X,, . . . , X, 
is normal. 

A parallel result, applicable for n = 2k, if E[Xj] = 6 is known, and it can 
be assumed that the common distribution is symmetrical, is that if the 
statistics 

where Y,' = (X,,-, - o2 + (X2, - O2 (g = 1,. . . , k) have the joint distri- 
bution of order statistics for k - 1 mutually independent standard uniform 
variables, the common distribution of the X's is normal. Further extensions 
have been obtained in later work. 

A typical result of this class due to Pakshirajan and Mohan (19711, which 
states that if X,, X2, and X, are mutually independent random variables 
each symmetric about zero, with cdf continuous at 0 (i.e., Pr[Xj = 01 = O), 
then the joint characteristic function of the ratios X1/X3 and X2/X3 is 
exp(- dm) if and only if the X's have a common normal distribution 
with zero expected value. However, as noted in the first edition (p. 53), the 
distribution of the ratio X1/X2 of two i.i.d. variables does not characterize a 
normal distribution [Fox (196511. 

Bryc (1990) has extended P61ya7s (1923) result (4c above) as follows: If X, 
and X2 are i.i.d. random variables with finite variance such that, for some a 
and /3 ( > O), ( a  + @XI) and (X, + X,) have identical distributions, then X, 
has a normal distribution. 

A further generalization [Wesolowski (1990)l is this: If XI,. . . , X, (n 2 2) 
are square integrable random variables and {a,, . . . , a,) are real numbers 
with a, # - 1, 0, or 1 and XI and C~,,ajXj have identical distributions, 
then XI has a normal distribution [compare 3a; Shimizu (1962) requires a 
similar condition for each X,]. Arnold and Isaacson (1978) give a simpler 
proof. See also Lukacs and Laha (1964), who relaxed the condition of square 
integrability. 
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Kagan, Linnik, and Rao (1973) contains some extensions and refinements 
of results already mentioned. These include 

1. If X,, . . . , Xn are i.i.d. and 

2 

i a jx j  (f'af- 1) and 
j-  1 j = l  j = 1  

are mutually independent, the X's are normally distributed (pp. 
105-106) (cf. 2a). 

2. If XI,. . . , Xn (n 2 3) are mutually independent, with E[Xi] = 0, if 

are linearly independent, and if 

then the X's each have a normal distribution (p. 419). 
3. If X,, . . . , Xn are mutually independent and {aj}, {bj} are nonzero real 

numbers satisfying the conditions 

a j , b j # O  foral l j ,  

then each Xj has a normal (possibly degenerate) distribution provided 
that the conditional distribution of E;, ,ajXj and C;,,bjXj is symmet- 
ric. 

We also note the following: 

4. If X, and X2 are i.i.d., they are unit normally distributed if and only if, 
for some a,, a, # 0 each of (a,X, + a2X2)2/(a: + a;) and (a,X, - 
a , ~ , ) ~ / ( a $  + a;) has a X 2  distribution with 1 degree of. freedom 
[Geisser (1973, pp. 492-494)l. 

5. Kelker and Matthes (1970) considered location-scale families. These 
are families with cdf of form 

where 8, c7 are the location and scale parameters, respectively. 
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According to Kelker and Matthes, "Within the location and scale parame- 
ter families (X, S) is a sufficient statistic [for (8, a)] if and only if the family is 
the normal distribution family." This is indeed correct, but Bondesson (1977) 
has pointed out that their proof required Fx(x) to represent a continuous 
distribution. He amended the proof to avoid this assumption. Kelker and 
Matthes (1970) also showed that 

6. If X,, . . . , Xn are independent and nondegenerate random variables 
with location family cdfs Fxfx) = gi(x - 8) (i = 1,. . . , n), then a nec- 
essary and sufficient condition for C~,,bjXi (b,, . . . , b, # 0) to be a 
sufficient statistic for 8 is that X, have a normal distribution with 
variance proportional to b;'. 

7. If XI, . . . , Xn (n = 4) are i.i.d. and (X, - X,)/S is independent of 
(X, S), then the common distribution of the X's is normal. 

Braverman (1985) has obtained characterizations in terms of unconditional 
expected values. These include the following characterizations: 

1. If XI, X,, and X, are i.i.d. random variables with finite moments of 
odd order, and there are constants C, such that 

for ail a = (a,, a,, a,) and all odd p ,  then each of the three variables 
has a normal distribution. 

This result is not true for even integers p. 
2. If X, and X, are i.i.d., with a symmetric common distribution, with 

E [ e x p ( ~  IX; I ')I < m for some A > 0 

and 

E [ ( x , I ~ ]  # 0 for all s 

real or complex, with Re s > 0, and 

for suitable C, then the common distribution is normal. 
Braverman (1989) has also shown that 

3. If XI and X, are i.i.d. (not necessarily symmetric) and there are two 
odd numbers, p ,  and p,, such that 
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for all real a,, a, and suitable Cj, then the common distribution of the 
X's is normal. 

Next we present a few notes on "stability" (or "robustness") of characteri- 
zations-namely, how far small departures from exact characterization con- 
ditions can affect size of departure from the characterized form. 

Defining the distance between two cdfs as 

Meshalkin (1968) described the two distributions as &-coincident if 
S(G(x), F(x)) E ,  and termed a random variable X, with cdf Fx(x), &-nor- 
mal if 

E 

for some pair (6, o). 
Sapogov (1956) showed that if XI and X, are independent, with 

FxXO) = $ 7  

g ( ~ ) = ( - 2 1 0 ~ & ) ~ / ~ + 1 ,  O < & < l ,  

then, if X, + X, is &-normal, XI is /3(&)-normal with 

P ( E )  = Cur3(  -log &)-I/,, 

where C is some constant (not depending on E ) ,  because 
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Using the concept of &-independence of XI and X2, defined by 

for all (aj, bj, cj), Nye (1966) showed that 

1. if XI and X2 are mutually independent, and (XI + X2) and (X, - X2) 
are &-independent, XI and X2 are both PI(&)-normal, 

2. if XI, . . . , Xn are i.i.d. random variables and jG; and S2 are F-indepen- 
dent, then the common distribution of the Xi's is p2(&)-normal. 

Both PI(&) and P2(&) were of order (-log &)-'I2, and so was P(E). 
Meshalkin (1968) obtained an improved order of magnitude in the follow- 

ing results: If XI and X2 are i.i.d., with expected value zero and variance 1, 
and E [ I X , I ~ ]  is bounded, then (1') &-independence of (XI + X2) and (XI - 
X2) implies ~,e'/~-normality of the common distribution, and (2') 6-coinci- 
dence of the distribution functions of (XI + X2)/ a and Xi implies 
p,~'/~-normality of X, and X2. The multipliers P, and P, depend on the 
bound of E[Ix,I~], but not on E .  

Yanushkyavichyus (1989) in his doctoral dissertation at Vilnius University 
provided the following stability theorem, improving on the above results: Let 
XI, .  . . , X,, be independent identically distributed random variables. If X 
and S2, defined by the formulas, 

[i.e., there exists a normal r.v. N, such that (13.41) is valid, where C is an 
absolute constant]. 



Yanushkyavichyus (1989) also improved on Nye (1966) and Meshalkin's 
result by showing that if X, and X, are independent identically distributed 
random variables and if S = XI + X2 and T = XI - X, are (6, E)-indepen- 
dent, then there exists a normal r.v. N, such that 

Note that the loss of order from E to ell3 with a logarithm factor is due to 
passage from the functional equations, in terms of distribution functions 
F(s,D,(x, y) = FS(x)FD(y) + r(x, y), (Ir(x, y)l s E, for all (x, y) E R') to a 
functional equation in terms of characteristic functions. Yanushkyavichyus's 
results do not involve any restrictions on moments or on possible degeneracy 
of the r.v. under consideration. 

Stability in regression models was studied by Lukacs (1942) and 
Yanushkyavichyus (1989), among others. Yanushkyavichyus's result is as 
follows: Let p be a distance defined on the space of random variables. A r.v. 
X (with a finite expectation E[XI) has (p ,  &)-regression on r.v. Y if 

Yanushkyavichyus (1989) selects p IZ,, Z2 1 = E (Z1 - Z21 and proves the 
following theorem: If X,, X, are i.i.d. random variables with E[Xj] = 0, 
E[Xj?] = a2, E[Ix~J~+']  I M < w for some 6 > 0 and L, = alXl + a2X2 
has (p,~)-regression on L, = b,X, + b2X2 (and a,b, + a,b, # 0; Jb,l, 
lbll < I), then there is a normal distribution [G(x)l with parameter (0, a2) 
such that 

sup I ~ ( x )  - G ( x )  ( 5 c ~ T ,  
X 

where F(x) = Pr[Xj I X I  and C depends on M and (a,, a,, b,, b,) only. 
Numerous other characterizations of normal are available in the literature. 

Gabovich (1974) has discussed the stability of certain characterization results. 
Khatri (1975a, b) has characterized the normal distribution by the constancy 
of regression; see Gyires (1975). Sampson (1975) has characterized the 
general exponential family of distributions by moment generating functions. 
Ruben (1974, 1975) has presented some characterizations through the distri- 
bution of the sample variance (see also Chapter 18). A characterization of 
normal distribution, through the general linear model, has been given by 
Ruben (1976). Parthasarathy (1976) characterized the normal law through the 
local independence of some statistics. Several weak sense analogues of 
characteristic properties were given by Kagan (1976). Zinger (1977) presented 
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a characterization through identically distributed linear statistics. Many of 
these characterizations have been reviewed in the book on this topic by 
Mathai and Pederzoli (1977). 

Some characterization results were also developed based on some proper- 
ties of estimators. For example, Klebanov and Melamed (1976) provided a 
characterization through properties of Bayesian estimators. Klebanov and 
Melamed (1978) also characterized the normal distribution through proper- 
ties of Fisher information amount. Fieger (1976) characterized the distribu- 
tion based on a homogeneous Pitman estimator. Bondesson (1976), by 
starting with the question when the sample mean is BLUE, established a 
characterization result. Bondesson (1974, 1975, 1978) also proved some 
characterizations of the normal law through properties of distributions of 
some statistics. In particular, in the 1978 paper Bondesson has shown that 
the sample variance, when properly normalized, is distributed as chi-square 
only for the normal distribution (also see Chapter 18). In an interesting note, 
Goel and DeGroot (1980) established that only normal distributions have 
linear posterior expectations in linear regression. Ahmad (1978) and 
Wesolowski (1987) have provided further characterizations based on regres- 
sion. Bischoff, Cremers, and Fieger (1987) used the sufficiency of the least- 
squares estimation for characterization. Eberl (1986) has characterized the ' 

normal distribution in translation classes through properties of Bayes estima- 
tors. Stadje (1988) provided a characterization through maximum likelihood 
estimation. Klebanov and Neupokoeva (1990) recently proved an interesting 
characterization by a property of the expected values of order statistics. A 
characterization of the normal law in the Gauss-Markov model has been 
given by Stepniak (1991). 

Fieger (1977) discussed transformations that characterize the normal dis- 
tribution. Arnold and Isaacson (1978) presented some characterizations 
through the distribution of linear forms (assuming finite variance). Prakasa 
Rao (1979) used some identities for characterizations. Lukacs (1976, 1977, 
1980) presented stability theorems for many characterizations. Some more 
assorted characterization results for the normal distribution are due to 
Talwalker (1980), Lajko (1980), Joshi (1982), Borovkov and Utev (1983), 
Ramasubramanian (1989, Viskov (1985), Ahsanullah and Hamedani (1988), 
and Ahsanullah (1990). Letac (1981) proved some interesting characteriza- 
tions via the concepts of isotropy and sphericity. Findeisen (1982) has 
discussed Gauss's characterization of the normal distribution. Hombas (1985) 
has characterized the normal density function as the solution of a differential 
equation. Ahsanullah (1989) has used properties of linear statistics as well as 
chi-squared in order to characterize the normal distribution. It is important 
to mention that the finiteness of the variance is a critical assumption in many 
of the above mentioned characterization results; see Lancaster (1987) for 
some comments in this regard. Quite recently, Cacoullos, Papathanasiou, and 
Utev (1993) discussed a characterization of the normal distribution and also 
presented a proof of the central limit theorem connected with it. 
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7 APPROXIMATIONS AND ALGORITHMS 

The most common use of the normal distribution is as an approximation 
where either normality is ascribed to a distribution in the construction of a 
model or a known distribution is replaced by a normal distribution with the 
same expected value and standard deviation. Examples of such replacement 
are the Fisher and Wilson-Hilferty approximations to the X2-distribution 
(Chapter 18), the normal approximation to the (central) t-distribution 
(Chapter 28), and the use of normal distribution to approximate the distribu- 
tion of the arithmetic mean of a number (often not very large, around 8 or 
more) of independent and identically distributed random variables. But now 
we are concerned with approximations to the normal distribution. It is 
possible to regard the distributions that are approximated by the normal 
distribution as being, themselves, approximations to normal distributions. 
However, they are usually more complex than the normal distribution, and 
we would like to study approximations that are simpler than the normal 
distribution. 

From the point of view of replacement of a normal distribution by another 
distribution we note that: 

1. A lognormal distribution can give a good representation of a normal 
distribution that has a small absolute value (say, less than 0.25) of the 
coefficient of variation. 

2. A particular form of logistic distribution is very close to a normal 
distribution (see Chapter 23). 

3. A form of the Weibull distribution with the shape parameter = 3.25 
is almost identical with the unit normal distribution (see Chapter 21). 

4. Raab and Green (1961) have suggested that the distribution with 
probability density function 

can be used to replace a normal distribution. The correspondence is 
not very precise (see Table 13.2 comparing standardized percentile 
deviates of the two distributions) but will sometimes give useful 
analytical results. The replacement would only be used if substantial 
simplification in analysis were effected thereby. 

The expected value and standard deviation of a random variable 
with distribution (13.42) are zero and ($.rr2 - 2)'" = 1.14. The stan- 
dardized range of the distribution (-.rr,.rr) is thus from -2.77 to 
+2.77 standard deviations, and obviously the replacement gives a 
poor fit in the tails. 

5. Bell (1962) has described even simpler approximations, using triangu- 
lar distributions (Chapter 26). He pointed out that such approxima- 
tions can be regarded as the second stage in a series of approximations 
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Table 13.2 Standardized Percentile Points of Distribution (13.42) 
and the Normal Distribution 

Cumulative Standardized Value 

Probabilitv Normal Distribution (13.42) 

by distributions of means of increasing numbers of independent rect- 
angularly distributed variables (see the method of construction .of 
"random normal deviates" used by Buslenko et al. (1966) described in 
Section 1). 

Chew (1968) includes 2, 4, and 5 in a list of five possible replace- 
ments for normal distributions. The two other distributions he sug- 
gests are uniform (Chapter 26) and Laplace (Chapter 24). These also 
will be very crude approximations. 

6. Hoyt (1968) has suggested using the distribution of the sum of three 
mutually independent random variables each uniformly distributed 
over the interval - 1 to + 1 as an approximation to the unit normal 
distribution. The density function is 

:(3 - x 2 )  for 1x1 I 1, 

&(3 - 1 x 1 ) ~  for 1 I 1x1 13. 

This gives an error not exceeding 0.01 in the cumulative distribution 
function. 

7. Steffensen (1937) has suggested the use of the distribution of a 
multiple of a chi random variable (i.e., cx,), with v sufficiently large. 
He called this a "semi-normal" distribution. 

8. A different kind of approximation has been developed in connection 
with calculation of the functions W e ) ,  Z ( - )  in computers. These 
approximations usually employ polynomial expressions. They give quite 
high accuracy, sometimes only within definite limits on the values of 
the variable. Outside these limits they may give quite poor approxima- 
tion. 
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Zelen and Severo (1964) quote, among other things, the fpllowing 
formulas, which are based on formulas given by Hastings (1955): 

with t = (1 + 0.33267~)-', a, = 0.4361836, a, = -0.1201676, and 
a, = 0.9372980. The error in @(x), for x 2 0, is less than 1 X 

with a, = 0.196854, a, = 0.115194, a, = 0.000344, and a, = 0.019527. 
The error in Mx), for x 2 0, is less than 2.5 X 

~ ( x )  (a, + a2x2 + a4x4 + a6x6)-l, (13.45) 

with a, = 2.490895, a, = 1.466003, a, = -0.024393, and a, = 

0.178257. The error in Z(x) is less than 2.7 X lo-,. 
Very accurate results can be obtained with the formula [Hart 

(1966)l 

with 

For x > 2, Schucany and Gray (1968) have constructed the simpler 
formula 
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which is even better than (13.46) for x > 3. [The proportionate error 
of (13.46) for 5 I x ,c 10 is about 0.5 X lo-'; that of (13.47) decreases 
from 0.39 x lo-' for x = 5 to 0.42 x for x = 10.1 

By use of rather elaborate formulas, quite remarkable accuracy can 
be attained. Strecock (1968) gives formulas for values of erf(x) [see 
(13.5)] and of the inverse function [inverf( y) where erf(inverf( y)) = y], 
correct to 22 decimal places for Ix 1 (or l inverf( y ) 1) less than 7.85. 

9. Burr (1967) has considered approximations to @(x) of form 

He suggests taking a = 0.644693, f i  = 0.161984, c = 4.874, and k = 
- 6.158. An even better approximation is obtained by using 

which is a symmetrical function of x. The discrepancy IH(x) - @(x)l 
reaches its maximum value of about 0.00046 when x A f 0.6. 

10. McGillivray and Kaller (1966) have considered the discrepancy be- 
tween @(XI and @(XI + a,,Z(x)H,,-,(x), where Hz, - , (x )  is the 
Hermite polynomial of order 2r - 1 and a,, is a constant chosen so 
that 1 -k a,,H,,(x) cannot be negative. This means that a,, must be 
between zero and 

A,, = I inf H,,(x) 1 ' .  
X 

The second function @(x) + a,,Z(x)H,,-,(x) is the cumulative dis- 
tribution function of a symmetrical distribution having the first r even 
central moments (and of course all odd moments), the same as those 
for a unit normal distribution. The discrepancy cannot exceed 

The values of this quantity, for r = 2, 3, and 4 are 0.10, 0.03, and 
0.005, respectively. [Of course other distributions with the same (zero) 
odd central moments and first r even central moments might have 
greater discrepancies, but these results do give a useful idea of the 
accuracy obtained by equating moments.] 
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11. Riffenburgh (1967) has suggested that a symmetrical truncated unit 
normal distribution be approximated by the density function 

where -c, c are the points of truncation. Use of this approximation is 
recommended only when c exceeds 1 (preferably c 2 1.5). Tables of 
the variance (to 3 decimal places) of the approximate distribution are 
given by Riffenburgh (1967) for c = 0.8(0.1)1.2(0.05)4.00, and also of 
Pr[X s x]  - 3 (to 4 decimal places) for c = 1.2(0.1)3.0 and x at 
intervals of 0.05. (Riffenburgh has also developed test procedures 
based on this distribution.) 

We now discuss some bound on the value of @(x). Various inequalities 
for Mills's ratio can also be interpreted as bounds for @(x) or Z(x). Using a 
simple geometrical argument (based on the joint distribution of two indepen- 
dent unit normal variables) it can be shown that 

[e.g., see D'Ortenzio (19631. By2 a refinement of the argument, on the 
left-hand side of (13.48), (1 - e-" 12) can be replaced by 

and on the right-hand side, (1 - e-"') can be replaced by 

I 
t 1 - e-x2 - ( 1  - 2T-1)2e-x2. 
k 

i The approximation 
i 

was obtained by P6lya (1945). This has a maximum error of 0.003, when 
x = 1.6. Cadwell (1951) modified (13.49) to 

[ (  ( 
1/2 @(x)  ' f 1 + 1 - exp - 2 ~ - ' x 2  - S T - ~ ( T  - 3)x4)) 1 .  (13.50) 
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Over the range 0 < x < 3.5, the maximum error of (13.50) is 0.0007, when 
x = 2.5. Formula (13.50) should not be used for large values of x. Cadwell 
suggested, on empirical grounds, the addition of the terms 

to the exponent in (13.50). This reduces the maximum error to 0.00005. 
Carta (1975) developed approximations, similar to that of Hastings in 

(13.441, of the form 

@(x) ; 1 - $(a, + 02x + . -  +anxn-1)-2', for x L 0. (13.51) 

Note the added flexibility of a variable first coefficient, as opposed to the 
fixed value of 1 in (13.44). For different choices of n and q, Carta (1975) has 
presented the coefficients a,'s that yield the minimum absolute error. For 
example, from Carta's table, we have the coefficients corresponding to n = 6 
and q = 4 as 

The absolute error for this approximation (for all x 2 0) is less than 1.2 X 
lop6. Note that in this case (and also for some other choices of n, q), the 
leading coefficient is very nearly 1 [as in (13.44)l. Carta also has presented 
similar approximations for x restricted in the intervals [O, 3.091, [O, 4.001, and 
[0,5.20]. 

Badhe (1976) presented the following approximation which is easily imple- 
mentable on a hand calculator: 

where Y = x2  + 10 and 

Badhe (1976) has pointed out that the approximation in (13.52) is good when 
x > 4, but certainly not suitable when x I 2. For the case where x I 2, 
Badhe has presented a seventh degree polynomial approximation (obtained 
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by Chebyshev economization) given by 

where 

The maximum absolute error for this approximation, for x E [O, 21, is 0.2 x 
lo+. 

By making use of the Hermite expansion 

where Hn(x) is the nth Hermite polynomial, and the known recurrence 
relation 

Hn+,(x) = xHn(x) - nHn-,(x) for n = 1,2,. . . , 

with H,,(x) = 1 and Hl(x) = x, Kerridge and Cook (1976) suggested using 
the series 

for computing @(x) on a computer. In (13.551, Bn(x) = xnH,(x)/n!, which is 
easily computed using the recurrence relation 
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Beasley and Springer (1977) have provided an algorithm for computing the 
percentage point x,, for a specified value of p, such that 

p = /::Z(t) dt. 

Their Fortran subroutine replaces p by q = p - and then compares (ql 
with 0.42; if (ql 5 0.42, x, is determined by a rational approximation 

9A(q2) 
Xp = - 

B(q2) ' 
(13.56) 

where A and B are polynomials of degrees 3 and 4, respectively, while if 
Iql > 0.42 an auxiliary variable, r = (ln(4 - Iql))l/z is first formed and then 

x, as 

C ( r >  x p = * -  
D ( r )  ' 

(13.57) 

where C and D are polynomials of degrees 3 and 2, respectively, the sign 
being taken that of q. See also an earlier algorithm given by Odeh and Evans 
(1974). 

Page (1977) considered simple approximations of the form 

e2y 
@(x)  A - 

1 + e 2 y  ' 
(13.58) 

where y = a,x(l + a2x2), and determined a, = 0.7988 and a, = 0 04417 to 
provide an approximation with maximum error 0.14 X Pagc lids also 
presented a similar simple approximation for the percentage point that gives 
two decimal accuracy. 

Derenzo (1977) provided an approximation to the unit normal cdf as 

(83x + 351)x + 562 
@(x) = 1 - - exp - 

2 ( (703,~) + 165 1 , x > 0, (13.59) 

with a maximum absolute error of 0.042% for x E (0,551. Another approxi- 
mation that Derenzo presented is 

with a maximum absolute error of 0.040% for x 2 5.5. Derenzo (1977) also 
provided an approximation for the percentage point x, (for a given p )  as 
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where y = -log(l - p/2), with a maximum absolute error of 1.3 X for 
x E (0,5.2). For x E [5.2,22.6), Derenzo has given the approximation 

with a maximum absolute error of 4 X 
Some more simple (but not necessarily more accurate for all x) approxi- 

mations for the cumulative distribution function @(x) have been given 
by Parsonson (1978), Easingwood (19791, Heard (1979), Martynov (1981), 
Monahan (198 I), Allasia and Giordano (19821, Hawkes (19821, Fearn (19831, 
Edgeman (1988), and Abernathy (1988). Pugh (1989) has made a survey of 
many of the algorithms available for computing the cdf @(x). 

Moran (1980), by slightly modifying a formula of Strecock (1968) given for 
the error function, came up with the approximation 

Compared to the 38-term approximation given by Strecock, this approxima- 
tion is simpler to use and is also accurate to nine decimal places for 1x1 r 7. 

Shore (19821, by using a "betalike" cumulative distribution G(x) [with 
G(- m) = 0, G(oo) = 1, G(0) = i, and 

where k l  > 01 to approximate @(x), derived the following three approxima- 
tions for the percentage point x,: 

where a and b should satisfy 
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or its approximate simpler form b = 1.3086 - 2.3735~ (which is easier to use 
when a value of a is sought that gives the best fit for any desired range of x). 

The approximation in (13.64) is the most accurate of the three with a 
maximum absolute difference of 0.0073 (0.5%) for 0 s x I 2.3. It is interest- 
ing to note that for b = 0, we have a = 0.5513 = 6 / ~ ,  in which case the 
simple approximation in (13.66) becomes the logistic approximation (with 
location parameter 0 and shape parameter 6/.rr); see Chapter 23. For 
-0.5 s x s 2.2, the best approximation of (13.66) is with a = 0.495 and 
b = 0.1337; for x > 2.2, the best approximation is obtained with a = 0.4506 
and b = 0.2252. 

Shore (1982) has also obtained a good approximation for the standard 
normal pdf as 

This approximation immediately yields an approximation for the Mills's ratio 
(hazard rate-see Chapter 33, Section 2)  as 

Shore has also discussed the accuracy of this approximation. 
Shah (1985) suggested the following approximation for @ ( x )  - i, x 2 0: 

Even though this approximation is simple to use, it is clear from (13.69) that 
it is not designed to approximate right tail areas for x r 2.6. For this reason 
Norton (1989) proposed the approximations for 1 - @ ( x )  as 

A number of comments and criticisms have been made on these approxima- 
tions given by Norton; see Hoaglin (1989), Pratt (1989), Cox (1989), Shore 
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(1990), Sharp (1990), Revfeim (1990), and McConnell (1990), and also the 
replies to these comments by Norton (1990a, b). 

Schonfelder (1978) discussed further on Chebyshev expansions for the 
error and related functions, including @(x). Hamaker (1978) presented 
simple approximations for the cdf @(x) as well as for the percentage point 
x,. Lin (1988) discussed alternatives to Hamaker's approximations. Schmeiser 
(1979) gave easy approximations for the percentage point x, that could be 
used on hand calculators. Bailey (1981) proposed alternatives to Hastings's 
approximation to x,. Lew (1981) presented an approximation to @(x) with 
simple coefficients. Wichura (1988) and Guirguis (1991) have discussed ap- 
proximations to the percentage point x,. While Heffernan (1988) gave a 
simple formula for the cdf @(x), Lin (1989) presented approximations for the 
normal tail probability as well as its inverse which are easy to use even on a 
hand calculator. Lin (1990) has also proposed a simpler logistic approxima- 
tion to @(x) and to x, [also see the comment after (13.6611. Even though all 
these approximations are quick and easy to use, their relative accuracies may 
vary dramatically, and therefore their use should be adjudged for the particu- 
lar situation one intends to use. The modern personal computer with its great 
power and memory does make some of the work (if not all) unnecessary, as 
the following remarks indicate. 

Fleming (1989) has advocated the use of numerical integration for approx- 
imating @(XI, for it can be easily demonstrated using a spreadsheet program 
and a personal computer. For example, @(XI can be computed using Lotus 

! 1-2-3 by approximating the area under the standard normal pdf Z(x). 
"leming (1989) has noted that a rectangular integration gives results accurate 

to four decimal places for 0 g x 5 3, with the interval width being taken as 
0.01. As he has pointed out, other methods of integration (like the trape- 
zoidal rule, Simpson's rule, Newton's three-eighths rule) are also easily 
adaptable and will be even more accurate in evaluating @(x). When a 
powerful personal computer with a spreadsheet program is available, it 
should be put to use rather than relying on simple-to-use approximations. 

A mechanical method of drawing a normal probability density curve has 
been described by Edwards (1963). N o m l  probability paper is graph paper 
with a natural scale in the horizontal (abscissa) direction, while the distances 
on the vertical (ordinate) scale are proportional to the corresponding normal 
deviates. The vertical scale is usually marked in percentages. Thus 50% 
correspond to the horizontal axis, 25% and 75% are at distances 0.6745 
below and above this line, 5% and 95% are at distances 1.9600 below and 
above this line, and so on (see Figure 13.2). Barnett (1976) has discussed 
convenient probability plotting positions, while Nelson (1976) has elaborated 
the construction of normal probability paper. Recently Nelson (1989) put 
forward a stabilized normal probability plotting technique; Rouncefield 
(1990), among many others, explained how one could use the normal proba- 
bility paper to assess the validity of the assumption of normal distribution for 
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If X has the distribution (13.1) and Pr[X I X I  is plotted (as the ordinate) 
against x (as the abscissa), then a straight line is obtained. The slope of this 
line is u-' and its intercept on the horizontal axis is at x = 6. If observed 
frequencies of the events (X 5 x) are used in place of the actual probabili- 
ties, an approximately straight-line plot may be expected. A straight line 
fitted to these observed points gives estimates of a and 5. Such graphical 
methods of estimation can give good practical accuracy, 

If the horizontal scale is logarithmic, we have lognormal probability paper 
(see Chapter 14). Half-nomzal probability paper is simply normal probability 
paper with negative abscissas omitted. It is used in connection with analysis 
of variance techniques developed by Daniel (1959). 
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8 ESTIMATION 

The theory of estimation of 6 and u has been fully worked out. To facilitate 
comprehension, this section is divided into four subsections. Subsections 8.1 
through 8.3 describe techniques primarily appropriate to a complete sample 
(though some apply also to censored data) corresponding to values of n 
independent random variables each having distribution (13.1). Subsection 8.4 
describes techniques suitable when the data have been censored by omission 
of certain order statistics. (Truncated normal distributions will be discussed 
in Section 10.) Subsection 8.5 lists various books/monographs available on 
specific topics relating to inference for the normal distribution. 

The variety of applicable methods can be bewildering. To judge rapidly 
between them, it is necessary to bear in mind accuracy, sensitivity to varia- 
tions from normality, and ease of calculation. The relative importance of 
these factors varies with circumstance, but they should always be taken into 
account. As mentioned earlier in Section 2, there are numerous volumes 
available on specific topics relating to inference for the normal distribution 
(as listed in Section 8.5). This is understandable of course, due to the volume 
of literature. Because of the availability of all these volumes and the upcom- 
ing revised edition of "Handbook of the Normal Distribution" by Pate1 and 

i Read, we only present briefly the recent developments, referring the readers 
1 to appropriate volumes for a comprehensive treatment of the topic of 

interest. 

8.1 Estimation of 6 
The arithmetic mean f = n-'C7,,Xj and the mean square deviation s2 = 

n-lCin_l(q - XI2 are jointly sufficient for 6 and u,  and X is sufficient for 6 
alone. For most practical purposes X is the best estimator for 6, whether or 
not u is known. It is the maximum likelihood estimator and is unbiased. 

The only circumstances under which this estimator would not be used are 
(1) when not all observations are available (as will be discussed more fully in 
Section 8.4), or (2) when the accuracy of some values (e.g., outlying values) is 
doubtful. In either case estimation may be based on a central block of order 
statistics. As an extreme case (when n is odd), a single order statistic, the 
median, may be used to estimate 6. This is an unbiased estimator of 6, and 
has standard deviation approximately equal to 

compared with 
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The efficiency of the median, relative to z, is thus approximately 

Alternatively, the j th Winsorized mean 

may be used ( j  < [(n - 1)/21). It can be seen that i(j) is obtained by 
replacing each of Xi, Xi, . . . , Xi' by Xi'+ and Xi -,+ l , .  . . , XA by XL -,. This 
is also an unbiased estimator of 6. It is interesting to note that Chernoff, 
Gastwirth, and Johns (1967) obtain a formula of the type (13.73), if only 

. , Xi-, are available, with the multipliers (j) of Xi'+, and Xi-j 
replaced by 

where E = j/(n + 11, and n-' replaced by (n - 2 j  + 2a)-'. In fact a is 
slightly less than j. 

Rather than replace the values of extreme observations by more central 
values, we can simply omit them. The resulting unbiased estimator of 6 is the 
jth trimmed mean 

n- j  

i:,) = ( n  - 2j)- '  X;. (13.74) 
i = ~ + l  

Some relative efficiencies of f:,,, compared with x, are shown in Table 13.3. 
(For efficiencies of &,,, see Table 13.9.) 

Table 13.3 Efficiency of Trimmed Means, Relative to X 
Relative Efficiency 

IZ j of &, (%I 
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It is apparent that the Winsorized mean &j) is more efficient than cj,. In 
fact, compared with the best linear unbiased estimator using the same order 
statistics, its efficiency never falls below 99.9% for n 1 20 [Sarhan and 
Greenberg (1962)l. Meeden (1976) has pointed out a special property of 
linear estimates of 5, while Mehran (1975) has derived relationships between 
the UMVUEs of the mean and median of a function of a normal distribution. 

Knowledge of u is of no help in calculating point estimators of 5. It is, 
however, used in calculating the standard deviations of such estimators and 
in constructing confidence intervals for 5. If u is known, 100(1 - a)% 
confidence limits for 5 are 

Although the similar formulas 

do not give exact limits (since &,,, tij) do not have normal distributions), they 
give limits that are useful provided that n is not too small (e.g., n 2 15). 

If u is not known, the above formulas cannot be used. It is natural to 
replace u by an estimator of a. If the sample size is large and a good 
(efficient) estimator of u is used, this can be done with little serious effect on 
the confidence coefficient. The "estimator" of u most often employed is 

although this is not an unbiased estimator of u. If this estimator is used, then 
U, in (13.75) should be replaced by tn - ,, , -,/, , the upper 50a% point of 
the t distribution with (n - 1) degrees of freedom (see Chapter 28). The 
effect of replacement of u by (1 - n-1)-1/2~ in formulas (13.76) is not so 

1 clear, but there should be comparable increase in the multiplying factor 
'1-~/2. 

It can be shown (see Section 3) that 3 and any function of the deviations 
(Xi - X), only, are mutually independent. This facilitates computation of 
percentage points of distributions of statistics of form 
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say, with various functions f (Xl  - X, . . . , Xn - Z )  in the denominator, 
subject to the restrictions that f(.) is positive with probability one and that 

for any a 2 0.  For example, we might have 

f ( x 1  - 8,. . . , x,, - l) = range 

f  (x ,  - 2,. . . , X, - x) = mean deviation 

Indeed, any of the estimators of cr to be described in Section 8.2 might be 
used as f  ( - 1. 

Under the conditions stated, the distribution of a- ' f (X1  - X, . . . , 
Xn - X )  does not depend on cr. The distribution of qf) therefore does not 
depend on 6 or a. As a result it is possible, in principle, to construct tables of 
percentage points qf,, , of this distribution, defined by f( . ) and a alone. The 
relation 

can be arranged to show that the limits 

form a 100(1 - a, - a,)% confidence interval for 6. 
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To calculate such limits it is necessary to have tables of percentage points 
of the distribution of qf,, among which the following are available: 

For f(.) = (1 - n-1)-1/2~, as described in Chapter 28 (tables of distribu- 
tion). 

For f (. ) = W [in Lord (1947)l. 
For f(.) = M [in Herrey (196511. 

If such tables are not available, approximations may be used, for example, 
the approximations to the distributions of M and W to be described in 
Section 8.2; alternatively, they may be determined through Monte Carlo 

i 
1 

simulations. 

8.2 Estimation of a 

The maximum likelihood estimator of a (8 not being known) is 

If 5 is known, the maximum likelihood estimator is 

It is, however, very unusual to know 8 exactly, and we will not discuss this 
estimator further, except to note that neither (13.78) nor (13.79) is an 
unbiased estimator of a. In fact 

and 

To obtain an unbiased estimator of u, we must multiply S by a,. A few 
values of a, are shown in Table 13.4. Values of ah = a,-, such that 
a',E[{(n - l)-'C(xj - 8)2)'/2] = a ,  are also shown. 
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Table 13.4 Multipliers a,, a; Such That E[a,S] = 

o = ~ [ a ' , f i ~  

n an a; 

2 1.77245 1.25331 
3 1.38198 1.12838 
4 1.25331 1.08540 
5 1.18942 1.06385 
6 1.15124 1.05094 
7 1.12587 1.04235 
8 1.10778 1.03624 
9 1.09424 1.03166 
10 1.08372 1.02811 

For n greater than 10, the formulas 

give quite good approximations. 

is an unbiased estimator of u2. Jarrett (1968) has given an interesting 
historical account of tables of these multiplying factors. [See also Cureton 
(1968) and Bolch (19681.1 Note that the value of a minimizing the mean 
square error of a s 2  as an estimator of u2 is (n-' + I)-'. The value of b 
minimizing the mean square error of bS as an estimator of u is a',,, 
[Markowitz (1968)l. Iliescu and Voda (1974) have discussed the estimation of 
u in detail. 

The variance of the unbiased estimator, anS, of u is 

The variance of V is 

Unbiased estimator of u can also be obtained by multiplying the mean 
deviation (MI and the range (W) by appropriate factors (depending of 
course on n). The resulting unbiased estimators b,M, cnW are identical with 
anS for n = 2, and have greater variances than anS for n > 2. Values of bn 
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can be calculated from the simple formula b, = J ( r r / ~ ) n ( n  - I ) - ' .  Val- 
ues of c, for n = 2(1)20 are given in Pearson and Hartley (1948). 

Relative efficiencies (inverse ratio of variances) of b,M, c,W and other 
unbiased estimators of u compared with a,$, are shown in Table 13.7 on 
page 136. From this table it can be seen that the estimator based on range is 
(slightly) more efficient than that based on mean deviation for n = 4,5, but 
less efficient for n 2 6. (For n = 2,3 the two estimators give identical 
estimators of u.) 

The formula for b,, quoted above, follows from 

The variance of M is 

2 u 2  1 
Var(M) = - (1 - $) {le + 4- - n + sin-' - 

nrr n - 1  

For n r 5, a very good approximation (error no more than about 0.00001) is 

u2 Var(M) A n-'(1 - 2rr-')(I - 0.12n-'). (13.86) 

Approximate formulas for the moment ratios of M are 

&(M) A 1.05n-', 

Godwin and Hartley (1945) calculated a table of the probability integral of 
the distribution of M, giving Pr[M I mu]  to 5 decimal places for m = 
0.00(0.02)3.00 and n = 2(1)10, and also multipliers Ma for percentile points 

; such that 

Pr[M I Maul = a 

to 3 decimal places, for n = 2(1)10 and a = 0.001, 0.005, 0.01, 0.025, 0.05, 
0.1, 0.9, 0.95, 0.975, 0.99, 0.995, and 0.999. For n = 10 there are also given 
approximate values calculated from the formula 

Although the upper and lower 2.5%, 5% and 10% values are not too 
inaccurate, approximation is poor for the more extreme values. A better 
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approximation was obtained by Cadwell (1953), by regarding ( ~ / a ) ' . ~  as 
having (approximately) a cX: distribution with 

logc = -log2 - 1.8 log - + - - l o g r  [ ( ;) (I) 

The approximation was obtained by first finding values of A,  c, and v to 
make ( M / a ) h n d  cX; have the same first three moments. The values of 
course depend on n; they are shown in Table 13.5 [based on Cadwell (1953)l. 
This table also gives the results of similar calculations for the range W. It can 
be seen that for M, the values of A do not vary much, once n exceeds 5, say. . 
An "average" value of 1.8 was chosen; the values of v and c were then 
adjusted to make the first two moments of (M/a)'.' and cX: agree. It might 

Table 13.5 Values of v, A, and log c Such That First Three Moments of (T/ o)" 
and cXf, Agree 

T = Range T = Mean Deviation 

n v A log10 c v A log,, c 
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be thought that A = 1.7 would have been a better choice, but the chosen 
value of A (= 1.8) does give closer approximation for smaller values of n, 
without affecting the accuracy too severely for larger values of n. 

In the same paper Cadwell discussed approximations to the distributions 
of the arithmetic mean of a number (k) of (independent) (M/u)'s or 
(W/u)'s. He also considered the distributions of the ratios 

maxj(Mj) 
and maxj(Y) 

minj(Mj) mini(?.) ' 

which are analogous to the ratios of maximum to minimum of a number of 
independent mean square deviations (s:, s:, . . . , s:), each based on the 
same number of observed values. Cadwell gives tables of approximate upper 
5% and 1% points of these statistics for n = 3(1)10 and k = 2(1)12 (for the 
5% points, n = 12,15,20,30,60 are also included for the mean deviation 
ratio, and n = 12,15,20 for the range ratio). Similar tables for the statistics 

max , (sf) 
min, (sf) 

are given by Pearson and Hartley (1948). They also provide some useful 
tables of values connected with the distribution of (M/u), including the 
expected value, variance, ply and p, for n = 2(1)20, 30, 60, and the upper 

. and lower 0.1, 0.5, 2.5, 5, and 10 percentage points for n = 2(1)10. 
Among the few simple exact results concerning the distribution of range, 

we note the following: 

For n = 2, E[W] = 2u/ 6; Var(W) = 2u2(1 - 2 ~ - ' ) .  
For n = 3, E[W] = 3u/ &; Var(W) = u2[2 - (9 - 3 f i ) ~ - ' ] .  
For n = 4, E[W] = (3u/ &XI + 2 ~ - '  sin-'(+)). 

Godwin (1949a) gives a number of other exact values of first and second 
moments. 

Subsequently, quite extensive tables of the distribution and moments of 
(W/u) have become available. A historical survey (up to 1960) of these tables 
has been given by Harter (19601, who also provided tables of percentage 
point multipliers, W,, to 6 decimal places for n = 2(1)20(2)40(10)100 and 
a = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95, 0.975, 
0.99, 0.995, 0.999, 0.9995, and 0.9999. There are also tables of the expected 
value, variance, and P1 and p, of (W/u) to 8 (or more) significant figures for 
n = 2(1)100 in Harter (1960). Pearson and Hartley (1948) give tables of 
Pr[W I wul to 4 decimal places for n = 2(1)20 and w = 0.00(0.05)7.25. They 
also give the upper and lower 0.1, 0.5, 2.5, 5, and 10 percentage points of the 
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distribution of (W/a) to 2 decimal places, and expected value and variance 
(5 decimal places), PI (4 decimal places), and P2 (3 decimal places) for 
n = 2(1)20, 30, and 60. More elaborate tables are also available in this 
context, and some numerical algorithms have also been developed; see 
Section 4 for details. 

From Table 13.5 it can be seen that a single value of A might not be found 
such that (W/U)~ is well approximated by a distribution of cX; (for suitably 
chosen c and v) for a range of values of n 1 20. Pearson (1952) and Cox 
(1949) have investigated this kind of approximation in some detail. From 
their investigations it appears that for smaller values of n (e.g., n s 8), an 
approximation of the form ex, is preferable (indeed, it is exact for n = 2); an 
approximation of the form cX: is better for larger values of n. 

Using tables of percentage points of (M/a), (W/u), and X 2  (see Chapter 
18), it is possible to construct confidence intervals for c+ by rewriting the 
equation 

in the form 

which shows that (T/TIwa2, T/Ta,) is a 100(1 - a, - a,)% confidence inter- 
val for a. Here T can be replaced by M, W ,  or G s ,  and T, by 
(M/u),, (W/u),, or 6 x n  - ,, respectively. 

The maximum likelihood estimator S of cr (like its unbiased counterpart 
a,S) is not a linear function of the observed values of XI, X,,  . . . , X,. It is, 
however, possible to construct a best linear unbiased estimator of a ,  using the 
order statistics Xi, Xi, .  . . , Xk. Such estimators (using all the sample values) 
are of form 

Values of aj have been calculated for n = 2(1)20; they have been published 
in Sarhan and Greenberg (1962). Balakrishnan (1990) has presented similar 
tables for n = 21(1)30(5)40. The efficiency of D relative to a,S is always 
greater than 98%. Although this is very satisfactory, these estimators are not 
used often because it is just as easy to calculate a,S if all values are to be 
used, and this does not require such extensive auxiliary tables. If a linear 
estimator is desired (e.g., to reduce effects of inaccurate outlying observa- 
tions), there are other linear estimators, nearly as efficient as D, but with 
simpler formulas for the coefficients. 
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We take especial note of Gini's mean difference 

We have 

; The statistic ;GG is an unbiased estimator of u. The first three lines of 
d Table 13.7 [taken from Nair (194911 show the efficiencies of M @ ,  ;\/;;G 
1 and D, the best linear unbiased estimator of a ,  for n = 2(1)10. It can be 

seen that +\/;;G is very nearly as efficient as D. As n tends to infinity, the 
efficiency of ~ G G ,  relative to a,S, tends to 

The asymptotically efficient estimator obtained by the method of Chernoff, 
Gastwirth, and Johns (1967) (see Section 2 of Chapter 12) is obtained by 
putting aj in (13.90) equal to U,,( ,+, ,  for all j .  

We also mention an estimator of u suggested by Gupta (1952) as an 
approximation to D. This is obtained by replacing the coefficients a j  in 
(13.90) by 

a; = 
E[U,'-,+I] 

(13.92) 
l { ~ [ q ] } 2  ' 

where U; s Ui s . . I U,' are order statistics corresponding to n indepen- 
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dent unit normal variables so that the estimator is 

For large n this estimator is very nearly the same as the asymptotically 
efficient estimator just described. Shapiro and Wilk (1965) described estima- 
tors similar to D', except that the ratio of a', to the remaining at's is 
modified. 

In view of the accuracy attainable with ~ G G ,  it does not seem necessary 
to consider the use of D'. However, we note an estimator proposed by Mead 
(1966) which is based on the same general idea as Gupta's estimator and may 
be convenient to apply in special circumstances (e.g., using certain kinds of 
rapid measuring apparatus). Suppose that the number of observations (n) is a 
multiple of m, say, km. The data are then sorted into k groups so that the m 
least values are in the first group, the next m least values in the second 
group, and so on; the last group consists of the m greatest values. If the unit 
normal distribution is truncated between ui-, and ui (> ui-,), then (see 
Section 10.1) the expected value of the truncated distribution is 

Mead's estimator is then 

C;=lh(i,[Mean of the ith group] 

Cf= 1~:i) 
9 

with 

(Note that @(ui) - @(ui-,) = k-' for all i.) Denoting the mean of the ith 
group by x, the estimators are as follows: for k = 2, 0.62666 (v2 - c);_for 
k = 3, 0.45838 (v3 - v ). for k = 4, 0.36927 (Ye- F,) + 0.09431 (Y3 - Y,); - 1 '  - 
for k = 5, 0.31213 (Y2- YL) + 0.11860 (Ye_ Y&; and for k = 6, 0.27177 
(G - + 0.12373 (Y, - Y2) + 0.03844 (Y, - Y3). Mead obtained these 
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values for the asymptotic efficiency of this estimator (n large) relative to anS: 

Asymptotic 87.6 93.3 95.6 96.8 97.8 
Efficiency (%) 

Yet another class of linear estimators has been studied by Oderfeld and 
Pleszczyhska (1961) and Pleszczyfiska (1965). These are linear functions of 
the order statistics Yi, . . . , Y,' corresponding to the random variables I;. = 

IXj - XI. These authors estimated the values of the coefficients in 

on an empirical basis, using result of sampling experiments. In the first paper 
the only value used for n was 5, and the suggested estimator was 

In the second paper the smallest absolute deviate was omitted (i.e., a, taken 
equal to zero). Coefficients (aj) were estimated for n = 3(1)10. In all cases 
the largest coefficient was a,, indicating the relative importance of extreme 
observations in estimating a. These estimators appear (from empirical evi- 
dence) to have quite high (over 95%) efficiencies relative to anS, though they 
are no higher than, for example, estimators based on Gini's mean difference. 

For n s 10 (at least) there are even simple unbiased estimators of u that 
are not much less efficient than ;\T;;G or D. These are based on the 
thickened ranges 

[Jones (1946)l. Values of the multiplying factor to be applied to J(2, to make 
it an unbiased estimator of u are shown in Table 13.6 [taken from Jones 
(1946)l. Relative efficiencies of these estimators (compared with anS) are 
also shown in Table 13.7. It can be seen that if J(,, (= W )  be used for n I 5 
and J(,, for 6 I n I 10, the relative efficiency never falls below 98%. 

For large n Prescott (1968) has given the approximate formulas 



Table 13.6 Multiplying Factor for J,,, 
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n Factor 

where p = r / n  is not too small. For n  large the maximum efficiency (96.65%) 
is attained with p = 0.225. Prescott suggests using p = :, since the efficiency 
is still over 90% and the easily remembered quantity 

is very nearly an unbiased estimator of a. 
Dixon (1960) has considered estimators of the form 

k ' C  qj) = k ' C  (X;+,+l - Xi'), (13.96) 
j j 

where the summation C j  is over some set of values of j. The statistic F,, is 

Table 13.7 Relative Efficiencies of Unbiased Estimators of u 

Estimator n 

Based on 2 3 4 5 6 7 8 9 10 
- -- 

Meandeviation 100.0 99.19 96.39 94.60 93.39 92.54 91.90 91.4 91.0 
Gini mean 100.0 99.19 98.75 98.50 98.34 98.24 98.16 98.1 98.1 

difference 
Best linear 100.0 99.19 98.92 98.84 98.83 98.86 98.90 98.9 99.0 
Range 100.0 99.19 97.52 95.48 93.30 91.12 89.00 86.9 85.0 

(J(,, = W )  
- 91.25 93.84 95.71 96.67 96.97 96.8 96.4 
- - - 90.25 91.78 93.56 95.0 95.9 
- - - - - 89.76 90.7 92.2 
- - - - - - - 89.4 
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Table 13.8 Unbiased Estimators of a 

Efficiency (%) 
n Estimator Relative to a,S 

sometimes called the jth quasi-range, occasionally the jth subrange. Evi- 
dently 

r 

J(r, = Tj, (and TI, = W). (13.97) 
j =  1 

Dixon found that for n I 10 the most efficient estimators of form (13.96) 
are those based on the range (W = W(,,), or thickened range J(,, just 
described. For n = 11 - 20 he obtained the most efficient unbiased estima- 
tors [in the class (13.96)] given in Table 13.8. The efficiencies compare quite 
well with those of D, though they are not generally as high as those of Gini's 
mean difference. 

Note that those unbiased linear estimators which are optimal (in various 
restricted classes) give large relative weight to the extreme observations. 
[Even S, which appears to be symmetrical, can be regarded (very roughly) as 
using weights proportional to the absolute magnitude of deviation from the 
sample mean.] Although we have obtained high efficiencies with these 
estimators, the calculations are all based on the complete validity of the 
normal distribution as applied to the data. Distributions of extreme order 
statistics are likely to be especially sensitive to departures from normality, 
and it is sometimes more important to guard against this possibility than to 
squeeze the last drop of formal "efficiency" from the data. 

The simplest method of this kind uses only a single pair of symmetrically 
placed order statistics, in the form of a quasi-range, giving an estimator 
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For n large it is best to take r A 0.069n. The efficiency (relative to a,S) of 
the corresponding unbiased estimator of a is about 65% [Pearson (1920)l. 
[For estimating 5 by a statistic of form 

the best choice is r a 0.270n, and the efficiency is about 67%.1 
KulldoriT (1963, 1964) has studied the construction of estimators of this 

kind in some detail. He found that if estimators of form 

were considered, quite good results could be obtained by taking Pri propor- 
tional to i, giving estimators of form 

For k = 2 Kulldorff found that the best values of r, and r, [subject to an 
estimator of form (13.99) being used] to take are 0.023% and 0.1279n, 
respectively, with y = 0.1174; for k = 3 optimal values are r ,  = 0.0115n, 
r ,  = 0.0567n, and r ,  = 0.1704n, with y = 0.0603. The corresponding relative 
efficiencies are approximately 82% for k = 2 and 89% for k = 3. Note that 
these results apply to "large" samples (large values of n) and cannot be 
expected to apply when n I 20, as in the discussion of other estimators. 

Using the large-sample approximations, Eisenberger and Posner (1965) 
have constructed "best linear unbiased estimators" of mean and standard 
deviation using only a fixed number (k) of quantiles, and excluding quantiles 
more extreme than 1 and 99%, or 2.5 and 97.5%, for k = 2(2)20. They also 
give (for the same values of k) pairs of linear estimators minimizing 

(Variance of estimator of mean) 

+ A(Variance of estimator of standard deviation) 

for A = 1, 2, and 3. Formulas appropriate for censored samples (described in 
Section 8.4) can also be used for complete samples if certain observed values 
must be ignored. 

Ogawa (1976) has commented on the optimal spacing of the systematic 
statistics for the estimation of normal parameters. Ogawa (1977) later pre- 
sented optimal spacings for the simultaneous estimation of 5 and a based on 
selected two sample quantiles. Cheng (1980) discussed the asymptotic best 
linear unbiased estimator of 6 from a censored sample. Fattorini (1978) gave 
percentile estimators for 5 and a, while Cheng and Ling (1983) discussed the 
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best linear unbiased estimators based on incomplete samples. Miyakawa, 
Tamiya, and Kotani (1985b) addressed the question of whether optimal 
spacings (in the case of small samples) for the estimation of 6 and a should 
be symmetric. Balakrishnan and Cohen (1991) have presented a detailed 
account of the optimal linear estimation problem. 

For the linear estimators based on order statistics (apart from those based 
on W alone) there are no easily available tables of percentage points. Such 
tables would be needed to construct confidence intervals for u by rearrang- 
ing the relation 

in the form 

[see (13.89)J. Even for those cases where such tables are available (M and W) 
only symmetrical intervals (with a, = a,) are practically useful. Except in 
connection with intervals based on S, no attempt has been made to construct 
shortest confidence intervals for a. Nair (1947) suggested calculation of 
upper and lower 1% and 5% points of the distribution of the second 
thickened range J(,,, but such tables have not been published. In many cases 
an approximation using a distribution of the form of that of a multiple of a 
chi random variable (ex,) (Chapter 18) may give results that are not seriously 
inaccurate for practical purposes. 

8 3  Estimation of Functions of and a 

Certain functions of both ( and u are sometimes the primary target of 
statistical estimation. Among these we particularly note the 100a% per- 
centile point (( + Uau) and the proportion (of population) less than a fixed 
number x ,  

These quantities may be estimated by general methods, not using the special 
form of distribution. However, when the validity of the assumption of 
normality has been clearly established, it is to be expected that more accurate 
estimates can be obtained by using this knowledge of the form of distribution. 

Evidently, if t, St are any unbiased estimators of 6, u ,  respectively, then 
( p  + Ua6') is an unbiased estimator of ( + Uau. If X is used as the 
estimator of ( and if Sf is any of the unbiased estimators of u described in 
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Section 8.2, then, since 3 and B' are independent, 

Combination of X with the best linear unbiased estimator of u (or one of 
the other, nearly as efficient, linear estimators of (T) will give a good linear 
estimator of 6 + Uau. 

If anS is used as an estimator of u ,  the distribution of the estimator 
( X  + UaanS) may be evaluated in the following way: 

where tk-,(A) denotes a noncentral t  variable (see Chapter 31) with n - 1 
degrees of freedom and a noncentrality parameter A. 

If other estimators of u are used, approximate results of similar form can 
be obtained by approximating the distribution of B' by that of cx,, with 
suitable values of c and v. It will usually be troublesome to assess the 
accuracy of these approximations. If effects of unreliable outlying observa- 

c tions are to be specially avoided, then estimators of 6 and u not using such 
observations may be used. However, if the reason for this precaution is that 
lack of normality is suspected, it is doubtful that 8 + Uau should be esti- 
mated at all. 

Coming now to the estimation of quantities like 

it is clear that the maximum likelihood estimator is obtained by replacing 6 
by X, and u by S. The resulting estimator is, in general, biased. (It is 
unbiased if it so happens that x = 6.) 
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To obtain the minimum variance unbiased estimator, the Blackwell-Rao 
theorem may be used. The estimator 

is an unbiased estimator of Pr[X 5 x ]  and X and S are jointly complete 
sufficient statistics for 6 and a. Hence the minimum variance unbiased 
estimator of Pr[X 5 x ]  is 

x -  x - X -  
= Pr [ s  - - s  < --+, s]. 

Since the conditional distribution of (X, - %)/s is independent of bothzand 
S, it is the same as the unconditional distribution of (XI - X)/S. Making an 
orthogonal transformation with one new variable d-(xl - x), and 
one equal to &x, it can be seen that (Xi - X)/S is distributed symmetrically 
about zero as the signed square root of (n - 1) times a beta variable with 
parameters $, - 1 (see Chapter 25). Hence the minimum variance unbiased 
estimator of Pr[X 5 x ]  is 

(Numerical evaluation can be effected using tables of the incomplete beta 
function, as described in Chapter 25.) 

At this point we note that if X,,, is independent of, and has the same 
distribution as each Xj, (Xn+, - X)/S is distributed as [(n + l)/(n - I)]'/' 
times t with n - 1 degrees of freedom. Hence the interval 

contains on average a proportion 1 - a, - a, of the population values. It is 
; thus a form of tolerance interval for the normal distribution. Unlike the 

tolerance intervals described in Chapter 12, the construction of this interval 
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makes use of knowledge of the form of population distribution. It cannot be 
used for other populations without the possibility of introducing bias. 

Wald and Wolfowitz (1946) have shown that a good approximation to 
tolerance limits, such that there is a probability equal to 1 - a that the limits 
include at least a specified proportion y of the population, is 

Xn-l,o 

where A, satisfies the equation 

@(n-'I2 + A,) - @(n-'12 - hy)  = y. 

The construction of exact one-sided tolerance limits can be simply ef- 
fected, using the noncentral t distribution (see Chapter 31). We note that the 
population proportion less than (2 + kS) is 

and this is at least y if 

Z + k ~ - t  
L U,. 

a 

This inequality can be rearranged in the form 

The statistic on the left-hand side of (13.106) has a noncentral t distribution 
with (n - 1) degrees of freedom and noncentrality parameter (- 6 ~ ~ ) .  In 
order that the probability that at least a proportion y of the population is 
less than (X + kS), should be equal to (1 - a), we make (-kd=) equal 
to the lower 100a% point of the noncentral t distribution, i.e. 

Nelson (1977) has discussed tolerance factors for the normal distribution. 
Odeh and Owen (1980) have presented elaborate tables of normal tolerance 
limits. Gerisch, Struck, and Wilke (1987) determined one-sided tolerance 
limit factors in the case of censored samples through Monte Carlo simula- 
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tions. Mee (1988) discussed the estimation of the percentage of a normal 
distribution lying outside a specified interval. Eberhardt, Mee, and Reeve 
(1989) determined factors for exact two-sided tolerance limits for the normal 
distribution. 

Sometimes it is desired to estimate the mean square error (6 - + a 2 ,  
where 5, is a specified number. The mean square 

d is an unbiased estimator of this quan ty. It is distributed as 

I Noncentral X 2  with \ 

n degrees of freedom and "-" noncentrality parameter 
, n ( t  - t0)2/0.2 I 

(see Chapter 29) and has variance 

A natural estimate of the coefficient of variation (a/() is the ratio a,S/%, 
or more generally a',s/X, with a', being suitably chosen. Since the expected 
value of s/X is infinite, it is not possible to obtain an unbiased estimator of 
this form. We can, however, construct an approximate confidence interval for 
a/[. We will suppose that ~ r [ z  < 01 can be neglected (i.e., a/( sufficiently 
small-less than a, say). Then, since F/s is distributed as (n - 1)-'I2 times 
noncentral t with n - 1 degrees of freedom and noncentrality parameter 
&[/a, it follows that (in the notation of Chapter 31) 
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where g,(z) is the solution (for g )  of the equation 

(assuming that x is not too small). Assuming now that 6 > 0, (13.108) can be 
rewritten 

It is necessary to use tables of the noncentral t distribution (see Chapter 31, 
Section 7) to calculate even these approximate limits. 

More easily calculable, but rather rough, approximate limits are obtained 
from the formula i 

4 
 aver limit = V[I - n - ' / ' ~ ~ ~ d P ]  -I, z 

(13.110) 
I 

Upper limit = v [I - n-'"U 1 -al d p ]  -', 

where V = S/Y. These are based on the assumption that (S - a) is 
approximately normally distributed with expected value ( a  - k t )  and vari- 
ance n-'u2(1 + i k 2 )  SO that (since 6 x=- a )  

that is, d n / ( l  + f VZ) (I - V ~ / U )  has approximately a unit normal distri- 
bution. A similar argument indicates that if XI, X2 are independent normal 
random variables and E[Xj] = l,, Var(Xj) = ai2 ( j  = 1,2) with 4, x=- a,, 
then putting Xl/X2 = R, the distribution of 

is approximately unit normal. 
Koopmans, Owen, and Rosenblatt (1964) have pointed a r t  that if the 

distribution of each of the independent variables is lognormal (see Chapter 
14), then construction of exact confidence intervals for the coefficient of 
variation is straightforward. Since it is possible to approximate a normal 
distribution quite closely by a lognormal distribution (see Chapter 14, Section 
3), it is likely that the same formulas will give good results for normal 
variables (though they will not of course give exactly specified values for 
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confidence coefficients). The (approximate) confidence limits, in terms of the 
original variables XI,. . . , Xn obtained by this method, are 

- 2  q= l(log xj - log x) 
2 ] - 1]1" (13.111) 

Xn-1,t-a, 

and 

where Fx= n-lE;=l log X,. 
The cumulative distribution function of the rth quasi-range for random 

samples from a unit normal distribution is [Jones et al. (196911 

r n(2r-i+l) r-i n-2r+i-1 c c ( -  1)n-2r+i-l-j+k P ,  W > 0, 
= r !  - i )  = k = O  

where 

and 6, = 0, 1 for h < 0, 2 0, respectively; the Y's are standardized multi- 
normal variables (Chapter 35) with all correlations equal to 3. 

Estimates for the reliability function of the normal distribution has been 
considered by Hurt (1980). Sinha (1985) has discussed Bayes's estimations of 
the reliability function. 

Owen and Hua (1977) have presented tables of confidence limits on the 
tail area of the normal distribution. Fertig and Mann (1977) have discussed 
one-sided prediction intervals for at least p out of m future observations. 
Nelson and Schmee (1981) have given prediction limits for the last failure 
time of a normal sample from early failures. Lingappaiah (1983) has dis- 
cussed prediction problems in normal samples. Along the lines of Fertig and 
Mann (1977), Chou and Owen (1986) have studied one-sided simultaneous 
lower prediction intervals for 1 future samples from a normal distribution. 
Whitmore (1986) has made some interesting comments on the prediction 
limits for a single normal observation. Odeh (1989a) has developed simulta- 
neous two-sided prediction intervals to contain at least 1 out of k future 
means. Similarly Odeh (1989b) has also discussed simultaneous one-sided 
prediction intervals to contain all of k future means. 
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