CHAPTER 17

Gamma Distributions

1 DEFINITION

A random variable X has a gamma distribution if its probability density
function is of form

(x =) "exp[~(x -~ v)/8]
B°T() ’

px(x) = a>0,B>0;x>v.

(17.1)

This distribution—denoted gamma (a, 8, y)—is Type III of Pearson's system
(Chapter 12, Section 4). It depends on three parameters a, B8, and vy. If
y =0, the distribution is termed a two-parameter gamma distribution, de-
noted gamma (a, 3); see equation (17.23).

The standardform of distribution is obtained by setting 8 = 1and y = 0.
This gives

xa—le—x
px(x) = O x>0. (17.2)

If a=1, we have an exponential distribution (see Chapter 19). If a is a
podtive integer, we have an Erlang distribution.
The distributionsof Y = —X, namely

(-y = )" exp[(y + v)/B]

py()’) = B"T(a) ’ y=< —v, (17'1)’

and
(-y)* e ,
Pr(y) = pe. ¥ S0, (17.2)
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338 GAMMA DISTRIBUTIONS

are also gamma digtributions. But such digtributions rarely need to be
considered, and we will not discuss them further here.
The probability integral of distribution (17.2) is

Pr{X <x] = [T(a)] ™" [t e " dr. (173)
0
Thisis an incompletegammafunction ratio. The quantity
T(a) = [ " dt (17.4)
0

is sometimes called an incomplete gamma function, but this name isalso quite
commonly applied to the ratio (17.3) (Chapter 1, Section 3).

This ratio dependson x and a, and it would be natural to use a notation
representing it as a function of these variables. However, Pearson (1922)
found it more convenient to use u =xa~'/? in place of x for tabulation
purposes, and he defined the incomplete gamma function as

1

I(u,a— 1) = m

[ rete ar, (17.5)
0

The main importance of the (standard) gamma distribution in statistical
theory isthefact that if U, U,, ..., U, areindependent unit normal variables,
the distribution of L¥_,U? is of form (17.1) witha=v/2, B =2,and y = 0.
This particular form of gamma distribution is called a chi-square distribution
with » degrees d freedom. The corresponding random variable is often
denoted by x2, and we will follow this practice. It isclear that $X7_,U? hasa
standard gamma distribution with a = » /2. Expressed symbolicaly:

pa(x%) = {2"/21"(%1/)}_l(xz)("ﬂ)_1 exp(—3x%), x220. (17.6)
Although in the definition above v must be an integer, the distribution (17.6)

is also caled a “y? distribution with » degrees of freedom" if » is any
positive number. This distribution is discussed in detail in Chapter 18.

2 MOMENTSAND OTHER PROPERTIES

The moment generating function of the standard gamma distribution (17.2) is

E[e*] = {F(a)}_lfomx“‘lexp[—(l -)x]dx=(1-1)"% t<l
(17.7)

The characteristic function is(1 — i)™=,
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Since distributions of form (17.1) can be obtained from those of form
(17.2) by the linear transformation X = (X' — y)/B, there is no difficulty in
deriving formulas for moments, generating functions, and so on, for (17.1)

from those for (17.2).
The formulafor the rth moment about zero of distribution (17.2) is

I'a+r)

A -1 r” a+r—1,—x —
l“'r {r(a)} 'I(') x € dx r(a) (17'8)
From (17.8) cumulants can be obtained. These are very simple:
k, = (r—1)la. (17.9)

Hence for distribution (17.2)

E[X] = Var(X) = a,
3 = 2a, (17.10)

SO

a, =B, =2a"12,
5= VB (17.11)
a,=B,=3+6a"l.
The mean deviation of distribution (17.2) is
2%
Ta) (17.12)

The standard distribution (17.2) hasasinglemode at x =a - 1if a= 1
[Distribution (17.1) hasamode at x = y + B(a — 1).] If a < 1, py(x) tends
toinfinity as x tendsto zero; if a = 1 (the standard exponential distribution),

lim, _, py(x) =1
There are points of inflexion, equidistant from the mode, at

x=a—-1tva-1 (17.13)
(provided that the values are real and positive). The standardized variable
X—a
Va

is referred to as the frequency factor by hydrologists in flood frequency
andysis[see, e.g., Phien (1991) or Chow (1969)].

W=

(17.14)
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Voda (1974) studies a reparametrized version of the gamma distribution
(17.1), with y = 0, whose pdf is

—ax
0

a\® 1
px(x;a,0) = (—) X x"‘lexp(

> 0; > 0.
P T(a) ), x>0,a,0

(17.15)

Some typical probability density functions are shown in Figures 17.1 and 17.2.
Figure 17.2 shows three different gamma distributions (17.1), each having the
same expected value (zero) and standard deviation (unity).

a=1 p(x)=exp[—(x*1)] (x> -1) Modeat -1
]

a=4 p(x)= §(x + 2 exp[ - 2(x + 2)] (x > —2) Mode at — 3
2187

a=9 p(x)= 4480(x +3)¥expl-3(x +3)] (x> —3) Modeat —3

It can be seen from Figure 17.1 that, as a increases, the shape of the curve
becomessimilar to the normal probability density curve. In fact the standard-
ized gamma distribution tends to the unit normal distribution as the value of
the parameter a tends to infinity:

lim Pr[(X — a)a™ 2 < u] = d(u) (17.16)

for al real values of u, where ®(u) = 27)~1/%[*  exp(— 3t?) dt.
A similar result holds for the general distribution (17.1), namely

X —
lim Pr[{ = —-a}a_l/ZSu] o). (1)
For x2,
lim Pr[(x2 - »)(2v) " < u] = B(u). (17.18)

It can be checked from (17.10) and (17.11) that a, — 0, a, — 3 (the values
for the normal distribution) as a, v, respectively, tend to infinity.

One of the most important properties of the distribution is the reproduc-
tive property: If X, X, are independent random variables each having a
distribution of form (17.1), with possibly different values a, a" of a, but with
common values of B and y, then (X, T X,) aso has a distribution of this
form, with the same value of f ?,double the value of y, and with a= «’ + al
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Figure17.1 Gamma Densty Functions

For digribution (17.2) Gini's concentration ratio is
_ F(a + %)
VrT(a +1)°
The Lorenz concentration ratio is
L =2Bys(a,at 1), (17.19b)

G (17.19a)
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— . Unit normal
distribution

By S S A R A
Figure 172 Standardized TypeIlI Density Functions
o= 15 p(x) = exp[-(x + 1)] (x> -1 Modeat —1
a=4  px)=8/30x+ 2)% expl— 2(x * 2)] (x> -2) Modeat -1/2

a=9%  px) = (187/4480Xx + 3 exp[—3(x +3)] (x> -3) Modeat —1 /3

where B,(a,b) = [£y*~ 1 - y)*~'dy is the incomplete beta function. The
Pietraratiois

ol —a
o {m +2)),F(2,at2a). (17.20)
The Theil entropy measure of inequality is
1
T=—+%¥(a)—loga (17.21)

[¥(a) =dlog I'(a)/da] [Sdem and Mount (1974); McDonald and Jensen
(1979)]. Saunders and Moran (1978) show that the e-quantile of the gamma
distribution (17.1), denoted by y,,,, where

[ ey dy /T (a) = & (17.22)
0

has the property that when 1> ¢, > g, > 0, the ratio y, = ¥,,ja/¥s,1« 1S @
decreasing function of a and thus the equation

a:b

has a unique solution, ¢(b) for any b = (1,«). Moreover y, —» 1 asa — .

The reproductive property is utilized, among other things, for deter-
mination of gamma priors in Bayesian reliability analysis [see Waller and
Waterman (1978)]. AlsO y, ., = ¥, iNCreases with a, implying that the
gamma distributions are " ordered in dispersion™ (see Chapter 33).
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3 GENESISAND APPLICATIONS

Lancaster (1966) quotes from Laplace (1836) in which the latter obtains a
gamma distribution as the posterior distribution of the " precision constant"
(h = 107%), (Chapter 13, Section 1) given the values of n independent
norma variables with zero mean and standard deviation ¢ (assuming a
"uniform” prior distribution for k). Lancaster (1966) also states that
Bienaymé (1838) obtained the (continuous) x?2 distribution as the limiting
distribution of the (discrete) random variable Z¥_ (N, — np;)*(np,)~!, where
(N, ..., N,) have a joint multinomia distribution with parameters
ByDys Dasevvs Py

The gamma distribution appears naturally in the theory associated with
normaly distributed random variables, as the distribution of the sum of
squares of independent unit normal variables. (See Chapter 18) The use of
the gamma distribution to approximate the distribution of quadratic forms
(particularly positive definite quadratic forms) in multinormally distributed
variables is well established and widespread. One of the earliest examples
was its use, in 1938, to approximate the distribution of the denominator in a
test criterion for difference between expected values of two normal popula-
tionswith possibly different variances[Welch (1938)]. It has been used in this
way many times since. The use of gamma distributions to represent distribu-
tions of range and quasi-ranges in random samples for a normal population
has been discussed in Chapter 13. In most applications the two-parameter
form (v = 0),

xa—le—x/ﬂ

—— x>0a>0,8>0, 17.23
5T (a) g (172

px(x) =

is used (this is equivalent to approximating by the distribution of 38x2,).
However, the three-parameter form has also been used with good effect [e.g.,
see Pearson (1963)].

The gammadistribution may be used in place of the normal distribution as
"parent” distribution in expansions of Gram-Charlier type (Chapter 12,
Section 4.2). Series with Laguerre polynomia multipliers rather than Her-
mite polynomial multipliers are obtained in this situation. Formulas for use
with such expansions and their properties have been described by Khamis
(1960). These Laguerre series have been used by Barton (1953) and Tiku
(19644, b) to approximate the distributions of **smooth test” (for goodness-of -
fit) statisticsand noncentral F (Chapter 30).

In applied work, gamma distributions give useful representations of many
physica situations. They have been used to make realistic adjustments to
exponential distributions in representing lifetimes. The "' reproductive™ prop-
erty (mentioned in Section 1) leads to the appearance of gamma distributions
in the theory of random counters and other topics associated with random
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processes in time, in particular in meteorological precipitation processes
[Kotz and Neumann (1963); Das (1955). Some other applications from
diverse fields are described in papers cited in references. Among the latter
papers Salem and Mount (1974) provide a comparison of the gamma and
lognormal distributions and demonstrate that the gamma distributions pro-
vides a better fit for personal income data in the United States for the years
1960 to 19609.

Dennis and Patil (1984) discuss applications of gamma distribution in
statistical ecology (standard model for sampling dispersion). Among more
recent applications we note Costantino and Desharnais’s (1981) empirical fit
of the steady-state abundances of laboratory flour beetle (Tribolium) popula-
tions. Dennis and Patil (1984) generalize this result and show that a gamma
distribution is an approximate stationary distribution for the abundance of a
population fluctuating around a stable equilibrium. Starting from the stochas-
tic model of population growth

dn
= = nle() +h(m)z(1)],

t
where n is population density at time t, g(u) is the specific growth rate, z(z)
is a Gaussian process (noise) with variability a2, and A(n) is a function
specifying the density dependence on the effects of the noise, Dennis and
Patil (1984) approximate Wright's formula for the equilibrium pdf by a
gamma distribution emphasizing its right-skewness in the distribution of
single-species abundances at equilibrium and its positive range. Then, modi-
fying their deterministic model from du/dt = ng(u) to du/dt = n[g(u) —
pw)], where p(u) is a specific rate describing the effects of predation,
harvesting and other forces, Dennis and Patil (1984) arrive at a weighted
gamma distribution for the equilibrium pdf.

Gamma distributions share with lognormal distributions (Chapter 14) the
ability to mimic closdly a normal distribution (by choosing a large enough)
while representing an essentially positive random variable (by choosing
y 2 0).

4 TABLESAND COMPUTATIONAL ALGORITHMS

In 1922 there appeared a comprehensive Tablesd the Incomplete I'-Function,
edited by Pearson (1922). This contains values of I(u, p) [see (17.5) with
a =p T 1 to seven decimal places for p = — 1(0.05)0(0.1)5(0.2)50 and u at
intervals of 0.1. These are supplemented by a table of values of

log I(u,p) — (p + 1)logu

for p= —1(0.05)0(0.110 and « = 0.1(0.1)1.5. This function was chosen to
make interpolation easier, particularly for low values of p (Section 5).
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Harter (1964) published tables of I(u, p) to nine decima places for
p = —0.5(0.5)74(1)164 and u at intervals of 0.1. In this work he covers a
greater range of values of p and has two extra decima places, athough
Pearson (1922) has p at finer intervals. Harter (1969) published further tables
o Type Il distributions, giving the 0.01, 0.05, 0.1, 05, 1, 2, 25, 4, 5, 10(10)90,
95, 96, 97.5, 98, 99, 995, 99.9, 99.95, and 99.99 percentage pointsto 5 decimal
places for /B, = 0.0(0.1)4.8(0.2)9.0. Harter (1971) extends his 1969 tables
and provides percentage points of the one-parameter gamma distribution
(Pearson Type III) corresponding to cumulative probabilities0.002 and 0.998
as wdl as 0.429624 and 0.570376. The first pair is used for determination of
the magnitude of an event (flood) corresponding to 500-year return period,
while the second correspondsto a return period of 32,762 years (the so-called
mean annual flood according to the guidelinesdf the U.S. Department of
Housing and Urban Development). These are the most important direct
tablesd I(u, p).

Pearson (1922) gave the more general formulafor distribution (17.1):

5 o ya+j
Pr{X <x] =e j=0{m} fory = (x —vy)/B >0. (17.24)

Savosa (1929, 1930) published tables of the probability integral, probability
dendity function and its first six derivativesfor distribution (17.1), with g and
y so chosen that X isstandardized(i.e., B = a@3/2; v = —2/a;). Vauesare
given to sx decima places for a, (= 2a~1/2) = 0.1(0.1)1.1 at intervals of
0.01 for x. Cohen, Hm, and Sugg (1969) have calculated tables of the
probability integral to nine decimal placesfor a, = 0.1(0.1)2.0(0.2)3.0(0.5)6.0
at intervals o 0.01 for x. Bobée and Morin (1973) provide tables of percent-
age pointsof order statisticsfor gamma distributions.

Thom (1968) has given tables to four decimal places of the distribution
function I'(a)/T(a):

1. for a = 0.5(0.5)15.0(1)36 and x = 0.0001, 0.001,
0.004(0.002)0.020(0.02)0.80(0.1)2.0(0.2)3.0(0.5)—the tabulation is con-
tinued for increasing x until the vaue o the tabulated function
exceeds 0.9900;

2 vauesd x satisfyingthe equation

L@
I'(a)

for a = 0.5(0.5)15.0(1)36 and & = 0.01, 0.05(0.05)0.95,0.99, Burgin
(1975) provides some interesting numerical computations of the gamma
and associated functions. He cites the following representation for the
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incomplete gamma function ratio:

e Y w ( un+1

[ —Y ¥
I(u’p) u Z I—.[7=1(p+l+1)

Y & ) (17.25)

Lau (1980) uses a series expansion similar to Wilk, Gnanadesikan, and
Huyett (1962a) to calculate the incomplete gamma function ratio. Moore
(1982) finds this series expansion not dways satisfactory. Bhattacharjee
(1970) provides an alternative algorithm. Phien (1991) presents an algorithm
for computing the quantile y,,,. Newton's method seems to be appropriate to
solving the equation

I(an: atl)=¢.

Efficient computation requires a powerful algorithm for computing the in-
complete gamma function ratio and a good initial value y,. Phien used
Moore's algorithm (1982) for calculation of the incomplete gamma function
ratio and the approximate value provided by Hoshi and Burges(1981) is used
for the initial value y,,.

Moore's algorithm is highly accurate. In the experiment conducted by
Phien (1991) Moore algorithm's value agreed with those values tabulated by
E. S. Pearson (1963) up to the sixth decimal place.

5 APPROXIMATIONAND GENERATION OF GAMMA RANDOM
VARIABLES

The best-known approximations for probability integrals of gamma distribu-
tions have been developed in connection with the y? distribution. Modifica-
tions to apply to general gamma distributions are direct, using the linear
transformation y = 2(x — y)/B. The reader should consult Section 5 of
Chapter 18.

From (17.25) it may be observed that for u small, u=?*DI(u, p) is very
approximately, a linear function of u. It isfor this reason that the values

log I(u,p) — (p + 1)log u

tabulated by Pearson (1922) lead to relatively easy interpolation. Gray,
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Thompson, and McWilliams (1969) have obtained the relatively smple ap-
proximation:
1

) a—1
m[ t*letdt = 1- 5
x* et I, x—a+tl (x—a+1)"+2x

, (17.26)

which gives good results when x is sufficiently large.
If Y hasthe standard uniform distribution (Chapter 26, Section 1)

py(y) =1, 0<y<l1, (17.27)

then (-2logY) is distributed as y? with 2 degrees of freedom. If
Y,Y,,...,Y, each have distribution (17.27) and are independent then
rs (- 2log Y;) isdistributed as x2,; that is, it has a gamma distribution with
a=s B =2 and vy = 0. Using thisrelation, it is possible to generate gamma
distributed variables from tables of random numbers. Extension to cases
when a is not an integer can be effected by methods of the kind described by
Bankaovi (1964).

If X hasdistribution (17.2), then the moment generating function of log X
is

I'(a+1t)
E tlog X7 — t] — .
[e 1=E[X'] T(a) (17.28)
Hence the rth cumulant of log X is
Kk, (log X) = ¢ Y(a). (17.29)
Note that for a large
B(log X) =a?,
i(log ) (17.30)

B,(log X) =3 + 2a™1,
which may be compared with
BA(X) = 4a”,
Bx(X) =3+ 6a"l.

The distribution of log X is more nearly normal than the distribution of X.
Although this approximation is not generally used directly, it is often very
useful when approximating the distributions of functions of independent
gamma variables.

For example, suppose that X,, X,,..., X, are independent variables,
each distributed as x2 with v degrees of freedom. Then the distribution of

max( X;, X,,..., X
R, = ( 1 42 k) (17.31)
min( X,, X,,..., X;)
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may be approximated by noting that
log R, = max(log X},...,log X, ) — min(log X;,...,log X,)

is approximately distributed as the range of k independent normal variables
each having the same expected value, and standard deviation

1"01 = -‘,

Gray and Schucany (1968) and Gray and Lewis (1971) apply the method of
H- and B,-transforms (see Chapter 12, Section 4) to approximate the tail
probabilities of chi-squared (and hence of gamma) distributions. Alfers and
Dinges (1984) sought an approximate normalizing transformation. They ob-
tained a polynomial expression.

A recent survey of approximations for gamma distribution quantiles is
contained in a paper by Phien (1991). He notes that for avariable X with pdf
given by (17.2), the standardized variable is W= (X — a)/ya (for which
E[W]1=0, Var(W) =1, and /B,(W) = 2/ya). The Wilson-Hilferty chi-
squared approximation (see Chapter 18, Section 5) gives

W, = Va[{l - fa + Ja 22} — 1], (17.33)

where ®(z,) = e. When aissmall (skewnessislarge), the valuesof W, given
by (17.33) are too low.
Kirby (1972) modifies(17.33) and obtains the following approximation:

W, = A(U - B), (17.34)

where A = max(ya, 0.40), B = 1t 00144 [max(0,2a~*/2 — 2.25)1%, and
U= max[B — Va /4,{1 - (iD)* + (éD)zsﬂ

with

1.85

D = 2a~"? - 0.063{max(0,2a"'/? — 1)}

Kirby (1972) provides tables to assist in the calculation of A, B, and D.
Kirby's approximation was in turn modified by Hoshi and Burges(1981) who
express A, B, B — Aya, and D as polynomias of degree5in a-'I1%. Phien
(1991) reproducesthe values given by Hoshi and Burges(1981). Harter (1969)
provided tables of exact valuesof W,, to which Bobée (1979) fitted polynomi-
ds in a2 of degree four. For (B, = 2/ya < 4 (i.e, a> }) Bobée’s
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approximation is superior to those of Haoshi and Burges (1981) and Kirby
(1979), but it is not satisfactory for smaller valuesof a.

Tadikamallaand Ramberg (1975), Wheeler (1975), and Tadikamalla (1977)
approximate the gamma distribution (17.2) by a four-parameter Burr distri-
bution (see Chapter 12, Section 4.5) by equating the first four moments—ex-
pected value, variance, skewness, and kurtosis.

For the Burr distribution with cdf,

k

FX(x)=1—-{1+(x;a)c}_ ,

the 100p% points of the largest and smallest order statisticsfrom a random
sampledf size n are

}l/c

a+b{(1-p) V"0 —1}", (17.35a)

_ 1/c
a+b{(1-p/m7 -1}, (17.35b)

respectively. These equations give good approximationsto the corresponding
value for the appropriate gamma distributions. Tables are available from
Tadikamalla (1977) to facilitate calculation of appropriate valuesfor a, b, k,
and c.

Vauesof ¢ and k for given values of a are given in Tadikamalla and
Ramberg (1975) and Wheeler (1975). These two paperswere published in the
same issue of the same journal, and yet they do not cross-reference each
other. (Fortunately the valuesof ¢ and k given in the two papers agree.)

Many papers on generation of gamma random variables have been written
in the years 1964 to 1990. It is impossible to survey them in detail. We draw
attention to Ahrens and Dieter (1974, "GO agorithm™), Fishman (1976),
Johnk (1964), Odell and Newrnan (1972), Walace (1974), and Whittaker
(1974)—all are based on the general von Neumann rejection method. Cheng
and Feast (1979, 1980) use the ratio of uniform random variableson the lines
suggested by Kinderman and Monahan (1977).

Bowman and Beauchamp (1975) warn of pitfallswith some gamma distri-
bution simulation routines. They note that an algorithm given by Phillipsand
Beightler (1972) does not actually generate random variables with gamma
distributions, but rather with Weibull distributions (see Chapter 21).

6 CHARACTERIZATIONS

If X, and X, are independent standard gamma random variables li.e.,
having distributions of form (17.2), possibly with different valuesof a; «,, a,,
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say], then the random variables

X

X, + X,

X, tx, and

are mutually independent. [Their distributions are, respectively, a standard
gammawith @ = &; T @, and a standard beta (Chapter 25) with parameters
a, a,.)

Lukacs (1965) showed that this property characterizes the gamma distribu-
tion in that, if X, and X, are independent positive random variables, and
X, tx, and X,/(X, T X,) are mutually independent, then X; and X,
must each have gamma distributions of form (17.1) with ¥ = 0, common S,
but possibly different values of «a. If it be assumed that X, and X, have
finite second moments and identical distributions, it is sufficient to require
that the regression function

E 0, X2t 28, X, X, T ay, X}
(X, +X;)°

Xl +X2], a” + a22 # 2a12,

be independent of X, * X, to ensure that the common distribution is a
gamma distribution [Laha (1964)].

Marsaglia (1974) extended Lukacss result by removing the condition that
X, and X, should be positive. He showsthat "If X; and X, are independent
nondegenerate random variables, then X, + X, isindependent of X,/X, if
and only if there isa constant c such that cX; and cX, have standard gamma
distributions." Marsaglia (1989) provides a simpler proof of this result. He
uses a method of deriving Lukacs's (1965) result, which was developed by
Findeisen (1978), without use of characteristic functions (although a dis-
claimer, suggested by the referees of the Findeison paper, clams that
characteristic functions are implicit in the argument). Marsaglia (1989) also
remarks that the “X; t X,, X,/X,” characterization has been used in devel-
oping computer methods for generating random points on surfaces by projec-
tions of points with independent (not necessarily positive) components.

Earlier Marsaglia (1974) had obtained the following re<t it "Let

X, X,5,..., X, (n = 2) beindependent random variables. Then s ctor
X, X, X,
S_,, ’ _ST 3oy TS,: )

where S, = L7_, X, isindependent of S, if and only if there is constant ¢
such that ¢X,, cX,,...,cX, are gamma' Wang and Chang (1977) used this
result to develop several senditive nonparametric tests of exponentiality.
Many multivariate generalizations of these results are surveyed in Wang
(1981).
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On the one hand, the distribution of X, /X, is not sufficient to establish
that each |X;| has a gamma distribution. If X; is distributed as standard
gamma(a, ), (j = 1,2) and X, and X, are mutualy independent then the
probability density function of G = X, /X, is

po(8) = [B(ay, ay)] gm (1 +g)"1te) g0, (17.36)

which is a Pearson Type VI distribution (see Chapter 12 and also Chapter
25). However, it is possible for X, and X, to be independent, identicaly
distributed positive random variables, and for G = X, /X, to have distribu-
tion (17.36), without each X; having a gamma distribution [Laha (1954);
Mauldon (1956); Kotlarski (1962, 1965)]. However, Kotlarski (1967) showed
that the joint distribution of ratios X,/X;, X,/X; (in a similar situation)
does characterize the distribution (up to a constant multiplier).

It followsthat any result depending only on the distribution (17.36) of the
ratio X, /X, cannot characterize the distribution of each X;. In particular, it
can be shown that if X, and X, are independent and identically distributed

asin (17.2), then
a| [X, X,
V2 Vx, Vx

hasa t,, distribution (as defined in Chapter 28), although this property is not
sufficient to establish the form of the common distribution of X; and X,
(given they are positive, independent, and identically distributed).

However, if X, is a third random variable (with the same properties
relativeto X, and X,), then the joint distribution of

a X, X, a X, X,
‘/ = — —1/ = | and 1/ = - -\ =
2 X, X, 2 X, X,
is sufficient to establish that common distribution is a gamma distribution
with y = 0. [Kotlarski (1967).]

Khatri and Rao (1968) have obtained the following characterizations of
the gamma distribution, based on constancy of various regression functions:

1 If X, X,,...,X, (n = 3) are independent positive random variables
and
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with the (n — 1) x n matrix (b;) (j = 2,...,n, i = 1,2,...,n) nonsin-
gular, then the constancy of

E{Y,lY,,...,Y,]

ensures that the X's must have a common gamma distribution (unless
they have zero variances).

Setting by =by, = ..+ =b,=1and b;;_; = -1, b;; =1, with
al other b's zero, the condition becomes the constancy of

n

2 X,

j=1

X, X, X

E ==, =,..., =
Xl Xl Xl]

2 Intheconditionsof 1, if E[X; ']+ 0(j=1,2,...,n)and

n
Z = Z bliXi_l’

i=1

with the b’s satisfying the same conditions asin 1, then the constancy of
E[Z)|1Z,,Z,,...,Z,]

ensures that each X; has a gamma distribution (not necessarily the
same for all j), unlessthey have zero variances. Choosing special values
o b’s as in 1, we obtain the condition that E[Z}.,X;'lX, -
X;,..., X, — X,] should be constant.

3 Under the same conditions asin 1, if E[X, log X,] isfinite, then the
constancy of

E

n n
Z af’YJ' I—[Xibi]’
j=1 i=1

with £7_,a;6; = 0, |b,| > max(|b,l, |b,|,...,|b,_1|), and a;b;/a,b, <
Ofordl j=1,2,...,n — Llensuresthat X; has a gamma distribution
(unlessit has zero variance).

As a special case, setting a, =a, = --- =& =1, b,=n-1, b,
=b,= . . =b,_, = —1, weobtain the condition as the constancy of

n—1 -1
E X,:'fl{ I‘IX,} :
j=1

2 X
j=1
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4. If X,,...,X, are independent, postive, and identicaly distributed
random variables, and if E[X;']# 0 (i =1,2,...,n) and

E

)
j=1

n
X aX !
j=1

is constant with the same conditions on the a's and b’s as in 3, the
common distribution of the X's isa gammadistribution (unlessit hasa
Zero variance).

Giving the a's and b’s the same special valuesasin 3, we obtain the
condition of constancy of

E

n
XX, -X|,
j=1

where X = n 715} X,

Khatri and Rao (1968) have also obtained a number of further conditions
characterizing gamma distributions. Hall and Simons (1969) have shown that
if X and Y are mutually independent and nondegenerate, and if

E[xx+y)7x+Y] and E[v¥Xx+Y) X +¥]

do not depend on X + Y, then either X and Y or =X and —Y have
two-parameter gamma distributions with a common value of the scale param-
eter .

The following characterization based on conditional expectation was sug-
gested by Wang (1972): "If B = (b;) be a n X n real matrix satisfying

n
Yb;=1 and Yb,=c=0
i1 1] ngk y

X =(X, X,,...,X,) isan X 1lrandom vector, Q* = X'BX, and L = CX,
where C = (c¢y, ¢3,...,¢,) isan n X 1 real vector such that X}_,c; = 1 and
¢cj=c,# 0 for some j,k, then provided the distribution F of X,
(i=1,2,...,n) is nondegenerate, the conditional expectation E[Q*|L] is
zero almost everywhere if and only if each X; has a gamma distribution.” If
N is a random variable defined by

N=0 if X,>x
and

N=n ifX,+ +X, <x <X+ +X,,y,
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where X,, X,,..., X, are independent random variables each having distri-
bution (17.1) with a an integer and with vy = 0 (Erlang distribution), then N
has the generalized Poisson distribution (Chapter 9, Section 3)

(n+Da—1 j
Prf[N<n]=e>F Y {(x,/'!ﬁ) }

j=0

Nabeya (1950) showed that for a = 1, the converse is true. That is to say,
it isa characterization of the common distribution of X/, ..., X, (exponentia
in this case) given that they are positive, independent, identically distributed,
and continuous. Goodman (1952) extended the result to apply to any positive
integer value of a 1 2, thus providing a characterization of a gamma distri-
bution.

Under conditions (4), Linnik, Rukhin, and Stzelic (1970) characterize the
gamma distribution by the property

X, X,
E Pk _S'—-’..-,TS—

where P, isa polynomia of degree k, n > 2, and n > k. Some conditionson
the behavior of the cdf of the positivei.i.d. X; and its derivativein an interval
[0, £] were required to prove the validity of this result.

If X;,X,, ..., X, are independent gamma variables with the same scale
parameter g;, and $(X,, X,,..., X,) is a statistic invariant under the scale
transformation X — c¢X (for al c# 0), then U=X}_ ,X; and § =
S(X,, X,,..., X,), are independent [Wang (1981)]. However, whether the
gamma distribution can be characterized by the independence of U and §
seems ill to be an open problem.

The following characterization has been proved by Wang (1981): Let
X, ..., X, (n > 2) be nondegenerate i.i.d. positive random variablesand 1,
and I, be arbitrary nonempty subsets of (1,2, ..., ) of sizek < n/2. Define
Ty =T, X; and T, = IT; ¢ 1, X If

S,,} doesnot dependon S, = Y X,
j=1

E[T2U] = 6E(T, + T,)?,

then the X,’s have a (two-parameter) gamma distribution (17.23).
Characterization of gamma distributions by the negative binomia has
been provided by Engel and Zijlstra (1980):

Let events A occur independently and a random o that the number o events
occurring in agiven interva is a Poisson random variable with rate 9. The waiting
time between events has a negative exponentid digribution with mean -1, and
the total time T between r + 1 events has agamma (r, 8~ 1) distribution.
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Congder now a second processindependent d thefirst in which events B occur at
an averagerate g. If we start from a pecified instant and count the number N o
B everts occurring before the rth A event, the didribution o N, is negative
binomid with parametersr and p = a/(a T B).

Engel and Zijlstra (1980) have shown that T has a gamma (r, a) distribution
if and only if Ny has a negative binomial distribution.

Letac (1985) characterizes the gamma distributions as follows. Given two
positive independent random variables X and Y, if the distribution of Y is
defined by its moments

a+s

E[vs = + _S_) for s > 0
a

and a fixed given positive a, then X exp{(—X/a)Y} and X have the same
distribution if and only if the distribution of X is gamma with shape
parameter a[asin (17.2)]. Moativation for this characterization isthat (UV)**
and U* have the same distribution provided U and V are independent
uniform [0, 1] variables.

She (1988) has proved several theorems dealing with characterizations of
the gamma distribution based on regression properties; see also Wesolowski
(1990) for a characterization result based on constant regression, and Yeo
and Milne (1991) for a characterization based on a mixture-type distribution.

7 ESTIMATION

Edtimation of parameters of gamma distribution has also received extensive
atention in the literature in the last two decades. The contributions of
Bowvmen and Shenton and of A. C. Cohen and his coworkers should be
particularly mentioned. Bowman and Shenton's (1988) monograph provides
detailed analysisof maximum likelihood estimators for two-parameter gamma
distributions with emphasis on the shape parameter and presents valuable
information on distributions and moments of these estimators, including their
joint distributions. Careful discussion of estimation problems associated with
the three-parameter gamma density is also presented. The major emphasis of
the monograph is on the distribution of sample standard deviation, skewness
ad kurtosis in random samples from a Gaussian density. The authors also
ded with the moments of the moment estimators. The list of references in
the monograph covers the development of the authors work on this area
¢ from 1968 onwards.

i  A. C. Cohen's contributions to estimation of parameters of the gamma
istribution are covered in the monographs by Cohen and Whitten (1988)
d Balakrishnan and Cohen (1991) with an emphasis on modified moment
timators and censored samples. As in Chapters 14 and 15 we will concen-
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trate on results not available in monographic literature and especially those
discussed in less easily available sources.

7.1 Three Parameters Unknown

We will first consider estimation for the three parameter distribution (17.1),
although in many casesit is possible to assume v is zero, and estimate only a
and g in (17.1). Given values of n independent random variables
X,,Xz, , X, €ach distributed as in (17.1), the equations satisfied by the
maximum |Ike|IhOOd estimators &, B, and ¥ of a, B, and y, respectively, are

Xn: log(X; — ) — nlog p — ny(Q) =0, (17.37a)
i=1
i(&—&)—mwzo, (17.37b)
j=I
- f’. (X, - 9) " +n{fa-1)  =o (17.37¢)

From (17.37¢) it can be seen that if & islessthan 1, then some X’s must be
less than y. This is anomalous, since for x <y the probability density
function (17.1) is zero. It is also clear that equations (17.37) will give rather
unstable results if & is near to 1, even though it exceeds 1 It is best,
therefore, not to use these equations unless it is expected that & is at least
25, say.

It is possible to solve equatlons (17.37) by iterative methods. A convenient
(but not the onIy) method is to use (17.37a) to determine a new value for B,
given @ and ¥. Then (17.37b) for a new 9, given & and 8, and (17.37¢) for a
new 2, given g and 4.

The asymptotic variance-covariance matrix of 6 6 , \/rTBA, and \/rT}‘/ is the
inverse of the matrix

¥'(a) B! B la-1)7"
B ap™? B2
B (a-1)"" B2 B Ha-2)""

The determinant of this matrix is

a2V (a) B 2 -3
a-2  (a-DXa-2)]|
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Hence

_91—1
Var(8) = 20724/ (@) - Qe = 3)(a -1, (17.38a)

Var(f) = n~8%[(a - 120/ (a) - a + 2| [2(a - D*¥/(a) =22 +3] 7,
(17.38b)

Var(§) = n~1%(a - 2){ay'(a) — 1} [2¢'(@) - (2 - 3)(a - 1)_2]_1-

(17.38c)
Using the approximation
W(a) +a™! F 3a7 T g0, (17.39)
we obtain the simple formulas,
Var(Q) = 6n~'a?, (17.38a)’
Var(f) + 3n"18%, (17.38bY
Var($) = in~182a3, (17.38c)

givingthe orders of magnitude of the variances when a islarge. Fisher (1922)
obtained the more precise approximation:

var(@) = 6n~[(a - 1)’ T 1(a - 1)] (17.40)

by using more terms in the expansion (17.39).
If the method of moments is used to estimate a, B8, and vy, the following
smple formulas are obtained:

5+af =X, (17.41a)
a@B*=m,, (17.41b)
2aB% = m,, (17.41c)
where
_ n
X=n'Y X,
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are the sample mean, second, and third central moments. (Since this method
would be used only when n is rather large, there is no need to attempt to
make the estimators unbiased; it is also not clear whether thiswould improve
the accuracy of estimation.) Note that (17.41a) and (17.37b) are identical.
From equations (17.41) the following formulas for the moment estimators
&, B, and ¥ are obtained:

- 4m3 4 mj

a = —"1—1? = ;1' where \/Fl— = m—;/—z (17.423)

- lm3

g==, (17.42b)
m,

y =X 2 17.42

¥= s (17.42c)

Although these are simple formulas, the estimators are often, unfortunately,
considerably less accurate than the maximum likelihood estimators &, 8,
and 9.

It can be shown that if n and a are large

Var(a) = 6a(a + 1)(a + 5)n! (17.43)
[Fisher (1922)]). Comparing (17.40) and (17.43), it can be seen that the ratio of

approximate values Var(é&)/Var(&) is substantially less than 1 unless a is
rather large. The ratio

(a —1)° + $(a - 1)
a(a + 1)(a + 5)

increases with a and reaches the value 0.8 at a = 39.1.

On the other hand, we have already noted that when a islessthan 25, the
maximum likelihood estimators are of doubtful utility. It then becomes
necessary to consider yet other methods of estimation. When aislessthan 1,
the distribution is shaped like a reversed J, with the probability density
function tending to infinity as x tendsto y (see Figure 17.1). If n islarge (as
it usualy isif athree-parameter distribution is being fitted), it is reasonable
to estimate y as the smallest observed value among X, X,,..., X,, or a
value dightly smaller than this. Estimation of a and 8 then proceeds as for
the two-parameter case, to be described later. Using the value of a so
estimated, a new valuefor y can be estimated, and so on.

As in the case of the lognorma and inverse Gaussian distributions
(Chapters 14 and 15), Cohen and Whitten (1988) advocate the use dof
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modified moment estimators

E[X]=X=7+aB, (17.44a)

Var(X) = s? = aB?, (17.44b)

(X{:n -

1 b4
E[F(X].))] = =F ;0,1,&). (17.44c)

n+1

Tables and graphs to facilitate solution of (17.44¢) are given by Cohen and
Whitten (1986, 1988), Bai, Jakeman, and Taylor (1990). Note that (17.37b)
and (17.37¢) can be written as

(X‘ _j), (17.45a)

X, — % n
( 7) - 7> (17.45b)
n :'=1(Xi - Y)

respectively. Assuming a value for 4, &($), and B(3) can be computed, the
correspondinglikelihood L(#) calculated. Thevaueof 4 maximizing L(¥) is
then found numerically. [See Bai, Jakeman, and Taylor (1990).]

Cheng and Arnin (1983) applied their maximum product of spacings(MPS)
estimator method (see Chapters 12, 14, and 15) to provide consistent estima-
torsof a, B, and y. This method yields the following first-order equations:

dlogG "1 [F [—(a—1) + BN (x = y)|(x —y)* eGPy

9y B i§1 (n+ 1)/1\)’?_,(-" - y)“‘le—(x—v)/ﬂdx ’
(17.46a)
dlog G a 1 "il [ (x— y) B2~ /P dx 0
= - — + = = ,
ap B n+1,7 f)é:’_l(x - ,y)“‘le—(x—v)/ﬁdx
(17.46b)
dlogG —log B — log¥(a)
da
ntl (X (x — y)* e -1/B V) dx
-~ Z it { Y) 1og(x y) 0, (17.460)
(n ¥ D (x =) e P ds
where X 1 X;< ... 1 X, are the order statistics corresponding to

Xl,...,X
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7.2 Some Parameters Unknown

We now consider estimation when the value of one of the three parameters
a, B, and vy is known. The commonest situation is when the value of vy is
known (usually it is zero). Occasionaly a is known (at least approximately)
but not B or ¥. Inadmissibility of standard estimators of gamma parameters
in the case when y = 0 has received attention in the literature.

Let X;, X,,..., X, beindependent random variableswith two-parameter
gamma distributions with parameters «;, 8; (i = 1,..., k) where the values
o the as are known but the B;’s (> 0) are unknown. Berger (1980)
considered weighted quadratic losses ¥ ,87™(8,87 - 1)* for m =
0,2,1, — 1, and showed that the standard estimator of (B,, B,; .. ., Bi), namey
(X,/(a, T 1),..., X, /(a, T 1) isinadmissiblefor k = 2 except when m =
0, in which case it is inadmissiblefor k > 3. Ghosh and Parsian (1980) also
discussed this problem for the same weighted quadratic losses. Gupta (1984)
has shown that inadmissibility also holds for the loss function

k k
L(?’:é) =X 88— X log,B, — k.

i=1 i=1

The vector of natural estimators (X,/a;,..., X,/a,) is an inadmissible
estimator of (By,...,B) for k = 3. It would seem, however, that the critical
dimension for inadmissibility is typicaly 2; three dimensions are required
only in special cases. The problem whether the natural estimator is admissi-
blefor k = 2 is an open question. Zubrzycki (1966) has considered the case
when B isknown to exceed some positive number B8,. He has shown that with
alossfunction (8* — B)%/B2, where 8* denotes an estimator of 3, and given
asingleobserved value of X, estimators

B*=(a+1)"'X+b, (17.47)
with
Bo(a+1) ' <b<2By(a+1)"",

have minimax risk [equal to (a + 1)7!] and are admissible in the class of
estimators linear in X.

If y is known, the maximum likelihood estimators of a and 8 might be
denoted é&(y), ﬁ(y)A to indicate their dependence on y. We will, however,
simply use @& and 8; no confusion between this use and that in Section 7.1
should arise.

If ¥ is known to be zero, the probability density function is o form
(17.23). If X,, X,,..., X, are independent random variables each having
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dis}ribution (17.23), then equations for the maximum likelihood estimators
&,B are

' ¥ log X; = log £ + 4(4), (17.482)

j=1

X =ap. (17.48b)

From (17.48b), B = X /4. Inserting this in (17.48a), we obtain the following
equation for a:

n"t Y logX,-log X=y(a) —logd; (17.48¢)

ji=1
that is,

Arithmetic mean ( X,, X,,..., X))
Geometricmean (X, X,,..., X,) |

R,,ZIOg

(Note that R, > 0.)

It is readily seen that the estimator &, of a the shape parameter, and the
ratio B/B are distributed independently of B. In particular, the variance of
B/B does not depend on the parent population value of B. The value of &
can be determined by inverse interpolation in a table of the function
flog a - y(a)). Such atable has been published by Masuyama and Kuroiwa
(1952). Chapman (1956) has published a table giving the results of such
inverse interpolation (i.e., values of &) corresponding to a few values of the
ratio of arithmetic to geometric mean. (He reported that a more complete
table was available from the Laboratory of Statistical Research, University of
Washington.)

Greenwood and Durand (1960) pointed out that the function eflog a -
¥(a)] progresses much more smoothly than does [log a — ¢(a)] and so is
. more convenient for interpolation. They gave a table of valuesdf aflog a -
. ()] as a function & a to eight decimal places for argument values
- 0.00(0.01)1.40, and to seven decimal places for argument values 1.4(0.2)18.0.
This method eliminates the necessity of inverse interpolation and assures
high accuracy using linear interpolation. Bain and Engelhardt (1975) show
that 2nalog R, is approximately distributed as cx?2 for appropriate valuesof
¢ and v (dependingon n and a). For a = 2 we have 2na log R, approxi-
| mately distributed as x?_,. [See als0(17.107).]




s =

v 4

H=— , - .
Arithmetic mean — Geometric mean

except when é islessthan about 2. They give a table of solutions of equation
(17.48¢) to five decimal places for

H = 1.000(0.001)1.010(0.002)1.030/0.005)1.080(0.01)1.16{0.02)1.40(0.05)
2.00(0.1)3.0(0.2)5.0(0.5)7.0(1)10(2)20(10)50.

For H > 1.001, linear interpolation givesfour decimal place accuracy for 6.
If & islarge enough, the approximation y(a) = log(a — 3) may be used.
Then from (17.48¢c) we have

Arithmetic mean a

Geometricmean ~ & — 3

2

that is,

- Arithmetic mean . _ iy (17.49)
2(Arithmetic mean — Geometric mean)

For a better approximation 1/12 (= 0.083) should be subtracted from the
right-hand side.
Thom (1968) suggests the approximation

ar+iR;(1+ 1+ 1R,). (17.50)

Thom further suggests adding the correction [(é; — 1X24 — 96a,)~ ' +
000921 if &, > 0.9, and givesa table of corrections for a < 09. It is stated
that with these corrections thevalue of &, should be correct to three decimal
places. )

Asymptotic formulas (as n — ) for the variances of v & and vn 8, and
the correlation between these statistics, are

{ Var(vVn &) = a{ay/(a) - 1} 7Y
Var(vn B) = B2/ (a){ay'(a) — 1} 7, (17.51)
Corr(&, ) = ~{avw'(a)}~'/%

b
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Masuyama and Kuroiwa (1952) give tables with values of efay’(e) — 1}7!
and y'(aXay'(a) — 1)L If the approximation ¢'(a) = (a - 3!, useful
for a large, is used, we have

Var(Vn &) = 2a(a — 3),
Var(vVn B) = pa, (17.52)
Corr(&,B) = —y/1 - 3a7 L.

Bowman and Shenton (1968) investigated the approximate solutions [due to
Greenwood and Durand (196011

& = R;1(0.500876 + 0.1648852R,, — 0.0544274R2), 0 <R, < 0.5772,
(17.53a)

& = R;(17.79728 + 11.968477R,, + R2)™'(8.898919 + 9.059950R,,
+0.9775373R5), 0.5772 < R, < 17. (17.53b)

The error of (17.53a) does not exceed 0.0088% and that of (17.53b) does not
exceed 0.0054%. .

If aisknown but not 8 or y, maximum likelihood estimators 8 = B(a),
3 = 9(a) satisfy equations (17.37b) and (17.37¢) with & replaced by a. From
(17.37bY,

'9=X—QBA,

and hence (17.37b) can be written as an equation for 3,
A o o a1 ”
(e-Df=|nt L (X,-X+af) | . (17.37¢)
j=1

Alternatively, using the first two sample moments, we have for moment
estimators 8 = B(a) and 7 = $(a),

7=X—aB’

af*=m, [cf.(17.41a) and (17.41b)],

whence

a (17.54)
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In this case (a known) for n large,

Var(ﬁ) =B%n"1,

Var(§) = %Bza(zx - Zi;"l’ (17.55)
AL . a
Corr(B,y) = — =+3

while

Var(B) + 38°(1 + 3™ ")n"",

Var(y) + 38%(a + 3)n7!, (17.56)
sy L (a+1)
Corr(B,7) = a3

The advantage of the maximum likelihood estimators is not so great in this
case as when all three parameters have to be estimated.

Glaser (1976a) observes that the distribution of R, isthe same as that of
I17-'V;, where the Vs are independently distributed beta random variables
with parameters aand i/n (i = 1,...,n — 1). Various methods for calcula-
tion of the distribution of R, and its lower critical values are availablein the
literature.

Provost (1988) providesexpressionfor the jth moment of R, and provides
an expression for its probability density function by inverting the Mdlin
transform. In their seminal paper and book Bowman and Shenton (1983,
1988) provide an approximation to the distribution of R,, along with a new
approximation to the inverse function @ = ¢ ~'(R,,), namely

4R2  4TR?
+
2R, 6 18 135 = 810

(17.57a)

This can be used when R, is not too small; if R, issmall, the formula
&~ (R, TlogR,)" (17.57b)

is suggested. They also suggest using Thom's formula (17.50) as a starting

value for an iterative procedure, calculating the mth iterate, &,, from the
formula

&m——l{lOg &m—l - l/’(‘im—l)}

= (17.58)

A —_—
a, =
n

They observethat about ten iterations suffices for reasonable accuracy.
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Bowman and Shenton (1983) also obtain the formula
k(Ry) = (= 1) (i =54C 0 (a) = gev(ne)}  (1759)

for the sth cumulant of R,. Asn — «,

n—1

(Ry) 5 (17.60a)
n-1
poRy) ~ 555, (17.60b)
uy(R,) ~ =2\ —, (17.60c)
12
po(Ry) ~3+ ——. (17.60d)

These values suggest that for n large R, is approximately distributed as
x2_1/Qna). For n large

. na 2 n—1 7(n? - 9)
Efa] ~ n-3 3(n-=3) 9(n-3Nna 54(n%-9)n?a?
(n? — 1)(26n° + 33n? — 324n — 707)
810(n2 - 9)(n T 5)n’’ to (st
. 2n%a? __2n(nt e
V&) ~ 3% =5)  3(n-3)n-5)
2n? - 3n + 8) (17.61b)
9(n - 3)%(n - 5) '
- 10 - 3)°
A ~ 4\/(in— : ){1 3 (;4,,2“2 I }’ (17.61c)
. 3(n+9)(n-5) 4(n - 3)°
By(a) ~ (n-T)(n-9) {1 " 3(n + 9)nta’ }

[Bowman and Shenton (1988)]. (17.61d)

i Bowman and Shenton (1982) give tables of coefficientsof series expansions
 for the expected value, variance and third and fourth central moments
Lof @ and B (terms up to n~%) for a= 0.2(0.1)3(0.2)5(0.5)15 and n =
| 6(1)50(5)100(10)150.
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Choi and Wette (1969) present results of sampling investigations. As an
example, with a= 2 and g = 1 they obtain the average values (arithmetic
means of 100 repetitions) shown below:

A

n a B

40 2.10 1.03
120 2.04 1.02
200 2.03 1.01

The positive bias in & is to be expected from the expansion (17.61a). Note
that the next term in the expansion is

(n* = D)w(n)
* 17010(n* — 9)(n + 5)(n + T)n*a*’

where
w(n) = 1004n°> + 9363n* + 13358n> — 82019n> — 296760n — 288472.

The expansion is asymptotic in nature, so only limited accuracy can be
expected from it's use. It is more accurate than an expansion smply in
descending powers of n.

Anderson and Ray (1975), noting that the biasin & can be considerable
when n is small, suggest using the following, less biased estimator based on
(17.61a):

P 2 17.62
; a 3 (17.62)

&* =

For estimating 8 = B!, these authors suggest 8~1f(4*), where

fla) = {1+ ona (1 r_ 1y "—_1-) . (17.63)
(n - 3)(na - 1) 9a na  27na?

Shenton and Bowman (1973) introduce the "amost unbiased" estimators

a

% 2nR,, 2nR? N 4n(n + )R}
S ln-1 2(n-=1)  Yn-1)(n+23)

2n(7n* + 60n + T)R} 1764
135(n — 1)(n + 3)(n +5) |’ (17.642)
. n-3 n+1 (n+1R, (4n*>—10n + 4)R?
B= + - - . (17.64b)
2nR 6n 18n 135n(n + 3)

n
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Dahiya and Gurland (1978) develop generalized minimum chi-squared esti-
mators of a and B. Stacy (1973) proposed "quasimaximum likelihood™
estimators for I/a and B,

(%), =n(n-1)""Y(2,-n")log Z, (17.65a)

B = )?(l) (17.65b)

a

where Z, = X,/nX (i = 1,..,,n).

These estimators arise from the maximum likelihood estimators for Stacy
and Mihram's (1965) generalized gamma distribution (see Section 8). The
estimators are unbiased and

1y 1 na’+¢'(a+1)
Var((;)) = W{l + o + 1 }, (17663)
7 Bz 247
Var(B) = m[l +a+ a‘y (a + 1)} (17.66b)

The asymptotic efficiencies are for (1 /aY

— 2,41 -1
f—n—[{l + a%Y'(a + 1)}{1 + Enia(—j:—l)} ,  (17.67a)
and for B
n-1 -1
{1+a+a®y(a+1)} . (17.67b)

Grouped data can be tested by standard methods. Rosaiah, Kantam, and
Narasmham (1991) give a detailed andysis for fitting a two-parameter
gamma distribution. They provide tables for optimum group length d, in the
sense of (1) minimum asymptotic generalized variance or (2) minimum sum of
asymptoticvariances, for a = 2(1)5 and number of groups, k = 2(1)10 for the
cases when neither a nor B are known or when only a or only 8 is known.
The group boundaries are 0, dB,2dB, ...,(k — 1) dB, ». Since it is necessary
to know both a and B to use the tables, they can be regarded as only
providing a basis for intelligent selection of group length. Tables are also
provided for use when group lengths may vary.
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7.3 Estimation of Shape Parameter (B and ¥ Known)

Bowman and Shenton (1970) carried out an extensive study of the distribu-
tional properties of two different estimators of the shape parameters, a, o
the gamma distribution (17.2). These were as follows:

1 The maximum likelihood estimator (MLE) é.
2. Thom's (1968) estimator &, [see (17.50)].

We recall that & isthe solution of the equation
R, =loga — y(&), (17.48¢c)

while
dr= IR Y1+ /1+3R,), (17.50)

which is applicable when & is not too small.
3 The moment estimator

¥ m'lz X 17.68
a= m, 5% (17.68)

The estimator (17.68) is much easier to compute than either & or é&;. All
three estimators are unaffected by the value of the scale parameter (B8).
Dusenberry and Bowman (1977) compare these three estimators. In regard to
&, they apply the techniques of David and Johnson (1951) to calculate the cdf
of & by noting that

Y2

Pr[@ <a] =Pr 5 <@ =Pr[ X% — a$? < 0].

It is not difficult to determine the moments of (X? — a$?). These are then
used to approximate the required probability. Dusenberry and Bowman
(1977) use the Cornish-Fisher expansion to evaluate percentage points of the
distribution of &. They plot valuesof Prla < a] for

a = 0.5(0.5)3.0(1)5(5)20,
n = 50,75, 100, 150, 200, 300, 750, 1000.
Figure 17.3 isthe plot for a = 20.
The estimator & is quite close to &. Although &, has a dight systematic

bias, this is offset by a somewhat lower variance and greater ease o
calculation. The moment estimator & is much easier to compute than either
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Figure173 Prla <a]for a = 20.

a or & but has a greater bias and variance than either of these two
estimators. As measured by yB, and B,, the distribution of & is closer to
normality than that of either @ or &, for nearly dl the valuesof a and »
considered by Dusenberry and Bowman (1977).

Blischke (1971) constructed a BAN (best asymptotically normal) estimator

o a, when g isknown, as

~1yn 1 X. _ ~
=&+ n Z:t=1 03( l/B) ‘//(a) (17.69)

v'(a)

a“‘l

Since & is a consistent estimator of « and

E[Iog(%()] — y(a),

the estimator &' is asymptotically unbiased.

Resultsfrom 50 simulated samples of sizes » = 11, 31, and 51 are set out
in Table 17.1, comparing valuesof & and &'. Note that & has a positive bias,
except for the case where a = 200 and # = 31. Huque and Katti (1976) and
Bar-Lev and Reiser (1983) discuss maximum conditional likelihood estima-
tion d a. There is little to choose between the two estimators. Note the
. genardly positive bias of the maximum likelihood estimator.
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Table17.1 Resultsof Simulationfor & and &

BAN Estimator (&') ML Estimator (&)
Arithmetic Sample Arithmetic Sample
a n Mean Variance Mean Variance
0.25 11 0.234" 0.00565" 0.269 0.0067
31 0.243 0.00214 0.258 0.0020
51 0.238 0.00088 0.252 0.0010
0.50 11 0.530 0.0271 0543 00219
31 0476 0.0059 0.498 0.0052
51 0494 0.0025 0.506 0.0045
0.75 11 0.760 0.0480 0.773 0.0339
31 0.743 0.0101 0.765 0.0135
51 0.745 0.0063 0.747 0.0069
125 11 1.228 0.0678 1.301 0.0879
31 1.195 0.0204 1.257 0.0221
51 1.253 0.0171 1.260 0.0172
150 11 1533 0.0958 1537 0.1010
31 1.487 0.0362 1.508 0.0355
51 1529 0.0233 1525 00199
2.00 11 2.063 0.121 2.036 0i2l0
31 1.965 0.067 1.996 0.0514
51 1979 0.031 2004 0.0321

'‘Based on 48 values; in two cases negative estimates were obtained.

74 Order Statisticsand Estimators Based on Order Statistics

A considerable amount of work has been done in evauating the lower
moments of order statistics X; < X3 < -.. <X, corresponding to sets d
independent random variables X, ..., X,, havingacommon standard gamma
distribution of form (17.2). Since ¥ and B are purely location and scale
parameters, the results are easily extended to the general form (17.1).
[Moments of order statistics of the exponential distribution (a = 1) are
discussed in some detail in Chapter 19, Section 6.] Tables of moments o
order statistics from random samples of size n from the standard gamma
distribution (17.2) are summarized in Table 17.2.

We next note that Kabe (1966) has obtained a convenient formula for the
characteristic function of any linear function X7_,a;X; of the order statistics.
The characteristic function is

E[exp{itﬁ:a,.X}}] = n![T(a)] ™" f(,w"~fXBf()x2{ﬁxj}a_l

j=1

j=1
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Applying the transformation
I_I ”]
j=r

so that 0 <w; <1 for j=1,2,...,(n = 1), and w, > 0, we obtain the
formula
n
n![T(a)] ™" wi* Dexp{—w,D(w)]| dw, dw,_,...dw
(re) ™ ff - fflg, Jexp(w, 0] d, ...,
1 -1 na
{ wie™ 1}[D(w)] aw,_,...dw,,

J
j=1

X

|
)
(17.71)

where
D(w)=(1—-ia,t) +w,_(1 —ia,_it) +w,_w,_(1—ia,_,t) + --

+ww,.ow,_(1 —iat).

Table17.2 Detailsof AvailableTableson Momentsof Gamma Order Statistics

Serial
Shape Number ()
Values Parameter Order of of Order Number
Reference of n a Moments  Statistics  Figures®
Gupta (1961)° 11 115 1(1)4 1(n } 6s.f.
(11(1)15 115 704 1
Breiter and 116 0.5(1)55 114 1(n 5sf.
Krishnaiah (1968) (0.510.5
Harter (1970) 1(1)40  0.5(0.5)4.0 1 1(1)n 5d.p.
Prescott (1974) 210 215 1 1M)n 4dp.
Walter and Stitt 1125 1(110(5)20 1 1,n
(1988) 115 1,5(5)20 1 1Mn 4d.p.
1005)25 1,5(5)20 1 1,5(5)n
Balasooriyaand 1o 518 11)5 1(1)2 5d.p.

Hapuarachchi (1991)°  (5)40

"The vadues d BS (1992) occasiondly differ from those of Gupta (1961) by more than 0.00001.
bThe last & these references aso includes covariances for » = 15(5)25, a = 2(1)5, extending
Prescott (1974) which includes covariances for n = 2(1)10 and the same vdues  a. More
extensve tablesd expected vauesd order statisticsfor n = 15(1)40, o = 5(1)8, and covariances
for n =2(1)25 and a= 2(1)8 are available on request from Baasooriya and Hapuarachchi
(Memoarid Universty  Newfoundland, St. John's).

“s.f. = dgnificant figures; d.p. = dedmd places.




372 GAMMA DISTRIBUTIONS

The multipleintegral can be expanded as a series of beta functions. Although
we will not use it here directly, equation (17.71) is very convenient as a
starting point for studying the distributions of linear functions of order
statistics from gamma distributions.

The distribution of X/, the rth smallest among n independent random
variables each having distribution (17.2), has the probability density function

Px(x) = nl [Fx(a) ]r—1[1 _ L(a) T palex
X! (r=1D)Yn-r)!| I'(a) T(a) I(a) ,
x>0, (17.72)

In genera, this expression does not lend itsdf to simple analytic treatment.
However, if a isa positive integer,

];y((:)) _ F(Ia) j(;yt“_le_'dt =1-e j:: {%)TJ} [cf. (17.243.)]

and so (17.72) becomes

n! _xa—l x!
Px;(x)=(r_1)!(n—r)![1_e ,Z:o{F}J

a—1 xj "—rxa—le-—(n—r+1)x ’
X Z{-_—} L x>0. (177)

j=0 J! (a—l)'

r—1

In this case it is possible to express al moments (of integer order) of X; and
al product moments (of integer orders) of order statistics as finite sums of
terms involving factorials, although these expression will usualy be cumber-
some.

Johnson (1952) has obtained an approximation to the distribution of range
(X, — X;) for random samplesfrom (17.2). Tiku and Malik (1972) provide 8,
and B, vauesdf the rth-order statistic X, for the gamma distribution and
compare them with approximate values obtained by equating the first three
moments of Xf with those of (X! a)/g. Numerica comparisons are
presented in Table 17.3. The agreement is excellent except for a= 0.0L. It is,
however, doubtful whether any method of approximation based on moments
can provide accurate valuesfor the extreme lower tail, as the classical paper
of E. S. Pearson (1963) indicated.

Lingappaiah (1974) obtained the joint density of X, and X! (s > r), from
the standard gamma distribution (17.1), and he derives from it that of the
difference U, ;, = X; — X;. More recently Lingappaiah (1990) has obtained
the distribution of U, , in the presence of a single outlier—when n -1
observations are from a standard gamma a distribution but one observation
is from a gamma « * & distribution. Typical values of Pr{U, , > u] under
these conditions are shown in Table 17.4.
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Table17.3 Comparisonof the Percentage Pointsof rth-Order Statistics
from Standard Gamma Distribution with valuesfrom Tiku and Malik’s
(1972) Approximation (with a= 2, samplesize n = 6)

Upper Percentage Points
50 Ie) 0 95 99
_ . J Exact 1135 1536 1963 2.250 2.854
" = 4\ Approximate 1135 1535 1962 2.249 2.854
, = Exact 2376 3036 3744 4.225 5.254
~ 7\ Approximate 23710 3.040 374 4234 5.245
Lower Percentage Points
) 10 05 01
-2 Exact 0.807 0570 0453 0.280
’ Approximate 0808 0571 0453 0.276
-4 Exact 1.829 1.423 1214 0.885
7= *(Approximate 1.821 1423 1224 0.924

Asisto be expected, in Table 17.4 Pr[U, ; > u] increases with 6. Note that
the values depend only on au, so a single table (with a = 1) might suffice.
Lingappaiah (1991) also provides tables (to 5 d.p.) with negative moments
E[X!™'] of the standard gamma a distribution for n = 2(1)5 with i = —(a -
1), -(a- 2),..., -1 As far as we know, the most general recurrence
relationship in the literature for moments of order statistics from gamma a
samples are those in Thomas and M oothathu (1991).

These formulas relate values of (descending) factorial moments

w2 = E[X0] = E[X(X; = 1) -+ (X, — i + 1)]
of the greatest X in a random sample of §ize n from the standard gamma
distribution (17.1). The recurrence formulals
F(k+an—n+1)x 1
{F(a)}" nk+n(a—l)

n

— k—n+j

- ZAn—l,j”‘(n,nn ])’
j=1

=
Y%

2; k = max[1 - «,n(1 — a)], (17.74)

Tablel74 Vauesof Prit, , > ulforn=5r=15=2
a =05 a=10
025 05 075 10 0.25 05 075 10

0.6672 0.4414 02901 0.1895 04414 0.1895 0.0796 0.0329
0.6831 04654 03161 02138 0.4654 02138 0.0968  0.0432

Note: Included are four observations from gamma a, one from gamma a + 8.

u

8

0 0.6065 03679 0.2231 0.1353 0.3679 0.1353 0.0498  0.0183
1

2
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A, =1,

A =-r{k-rt1t(n-rya-1}4,_,,,

ri(n—rA,_ ;. —r{k=r+j+(n-r)}a-1}A4,,,;
(i=2,3,....,r—1)

N
]

A, =r(n-1)A, .

r,r

If « is an integer, expected values and moments of the other orde
statistics can be evaluated using Joshi’s (1979) formula:

l('+1 a)
ﬂ',l((l)n - I"’,/(c') g+ m—lr(a) Z { }, (17.75

with ) = E[X]" } u® =1 4 =0 for i =1 Prescott (1974) show
that '

rosscepapsb b3 CEhide (PR LR

E[X;X;] = '

{F( )}
Nu+a+D)INuta+j+1)
tu+a—j+1(t + q)U+a+]'+1j!

Xa,(a,t ~1)a,(a,qg—1)

(17.7

where t=n—s+c+1 g=b+s-r-c and summation is over 0
b<r—-1, 0<sc<r—-s5s-1, 0<su<(a-Dt-1, 0<v
(@a—1g—-1),0<j<u+a,and
n!
T U-DIs-r=-Dn-s)"

and where a,(h, i) is the coefficient of z# in the expansion of {£/_ (z’/)‘)
Gupta (1962) obtained recurrence formulas for the crude moments
= E[X},,] of the kth-order statistic (X},.,)- These are

(n—1Na-1) ( + i+ )

) n T(a+i+j

[.L'(l.) = —0 (a,n — 1)——————, 17.77
1:n F(a) IEO aj( n ) na+l+] (

DHi(n - 0 k+j+1

where a,(a, p) is as defined in (17.76); see Balakrishnan and Cohen (199
Prescott (1974) provided a table of variances and covariancesd al ord
statistics for n = 2(1)10 with a = 2(1)5 to four decima places. (He usd
log-gamma computer routine, accurate to about ten decimal places, to ac
errors occurring in tables prepared by Gupta (1962)—which have be
ascribed to the way in which ratios of gamma functions were calculated.)

n! k= -1 l‘fll(i-) —k+j
o _ 1 _linkditl g 97
MHpn (k _ k)' JZ ( ) ( )n _ . ’ (
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Using Gupta’s tables (1962), it is possible to construct best linear unbiased
estimators of the parameter 8 if « and y are known. Coefficients of such
estimators have been given by Musson (1965). Coefficients for best linear
unbiased estimators, not using all of the sample values have been given by

1. Karns(1963) using only one-order statistic,

2 Bruce (1964) using the least M valuesout of n,

3 Hill (1965) using only the least number of order statistics (from a
complete or censored sample) to give a specified efficiency relative to
the best linear unbiased estimator using all available order statistics,

4. Sarndal (1964) using the best k-order statistics. (Sarndal aso considers
estimation of g and v, a being known.)

Returning now to situations where it is necessary to estimate all three
parameters a, 8, and y, we consider maximum likelihood estimation when
the least r; and greatest r, of the X's have been censored. The maximum
likelihood equations are [introducing Z =(X] - $)/8 for convenience]

"Ez . r'(a) — T 2(“) (& )
log Z; — ny'(&) + " ~2__r, + '1” -r, =0,
j=r+1 ! I'(e) - r‘z‘,,_,z(ol) r1+1( )
(17.78a)
n—ry Za A,,_,z
—(n-r-r)é+ YL Z
' ? j=f1+1 F(a) —ry(a)
Z‘x+le 2r1+1
—————(——)—rl = 0, (17.78b)
71+1
n-ry A&—rle—Z"_,z
—(a@-1) Y Zl+(n-r—r)+ —1=2
2 T T@) -1, (@)
Z"_11+1e—zr1+l
s L (17.78¢)
Zrl+l( ) :

The equations smplify if either r, =0 or r,=0. For the case r, =0
(censoring from above) a method of solving the equations is given by Harter
and Moore (1965); also see Balakrishnan and Cohen (1991).

Estimation is simplified if the value of y is known. Without loss of
generality it may be arranged (if v is known) to make y = 0 (by adding, if
necessary, a suitable constant to each observed value). For this case, with
data censored from above (r, =0), Wilk, Gnanadesikan, and Huyett
(1962a,b) have provided tables which considerably facilitate solution of the
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maximum likelihood equations. They express these equations in terms of

(H" er,)l/(n'—rz)

j=1 %

P= , , (17.79)
Xn -—ra
Zn rnx’

s - E=X) (17.80)

(n - r2) n——rz’

that is, the ratios of the geometric and arithmetic means of the available
observed values to their maximum. The maximum likelihood equations for &
and g are

A Xary alog J(&)
(n - r)log P=n|y'(a) - log\ —5 - r,—aa—, (17.81a)

SX, ,, . r, | e %/ (17.81b)
g " {—} i@ '
where
J(&) = f”ta—le—x,’._,zt/ﬁ dt. (17.82)
1

Note that r, and n enter the equatlons only in terms of the ratio r,/n,
and X,_, and B only as the ratio X!_ v/ B- Wnlk Gnanadesikan, and
Huyett (1962b) provide tables, giving & and aB/x. », 0 three decimal
placesfor

n
— =10,1.1,1.2(0.2)2.0,2.3,2.6,3.0,

r,
P=0.04(0.04)1.00, and S = 0.08(0.04)1.00.

The values for n/r, = 1 of course correspond to uncensored samples. A
special table, which we have already mentioned in Section 7.2, is provided for
this case. Wilk, Gnanadesikan, and Lauh (1966) discuss generalizations and
modifications of these techniques for estimation of an unknown common
scale parameter based on order statistics from a sample of gamma random
variables with known shape parameters not necessarily all equal.

If a is known, it is possible to use "gamma probability paper,” as
described by Wilk, Gnanadesikan, and Huyett (1962a) to estimate B and vy
graphically. This entails plotting the observed order statistics against the
corresponding expected values for the standard distribution (17.2) (which of
course depends on a) or, if these are not available, the values §; satisfying
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the equations

J
n+1

= [I(a)] f()gjx““le"‘dx. (17.83)

In the case of progressively censored sampling, Cohen and Norgaard (1977)
and Cohen and Whitten (1988) suggest the following procedure for solving
the maximum likelihood equations (in the case when a > 1): Let n denote
the total samplesizeand D, the number of failingitems, for which there are
completely determined life spans. Suppose that censoring occursin k stages
a times T, <T,< ... <T, and that C; surviving items are selected
randomly and withdrawn (censored) from further observation at time l;..
Then

n=D+ Y.C,. (17.84)

The sample data consist of the ordered life span observations {X;} (i =
1,2,...,D), the censoring times{|;.} and the numbers of censored items{C;}
(j=1,2,...,k). Thelikelihood function is

D k c
L= KLIle(X.-) ,~=”1 {1 - F(T))}7, (17.85)

where K is a constant, and px(-) and Fy(-) are the pdf and cdf of the
lifetime distribution, respectively.
For the three-parameter gamma lifetime distribution (17.1), we have

D
logL = ~DlogI'(a) = nalogB - B~" ¥ (x,_y)
i=1
D k
+(a-1) Y log(X;—v)+ X C;log(l — F) +log K, (17.86)
i=1 j=1

where

F=(6T(@) " [ T""y“-lexp(%y) d. (17.87)
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The corresponding maximum likelihood equations are

dlog L D k C, OF,
™ ¥(a) ~ Dlog B El og(X; ~ 7) E.l T“Fa "
(17.88a)
dlog L Da 1 2 k C, dF
=+t =Y (X,-y)- L Ly, 17.88b
dlogL. D . ]
=——(a-1 X —-y) ' - = 17.88¢
=g (- Exi-y LTE5 =0 s

[cf. (17.37a)-(17.37¢) for the case of uncensored samples).

Evaluation of the partial derivativesof F; with respect to a, 8, and y and
computationa details are given in Cohen and Whitten (1988). They caution
that convergence problems may arise in iterative solution of equations (17.88)
unless a > 1 (in our opinion, a > 25). Cohen and Norgaard (1977) assert
that for a > 4, the formulas can be used "without any hesitation."

When a islessthan 1, the likelihood function tends to infinity asy — Xj.
Cohen and Norgaard (1977) suggest setting an initial value ¥ = X} — 37,
where n is "the precision with which observations are made,” and then
proceeding iteratively. They also provide computational details for calcula-
tion of the asymptotic variance-covariance matrix of &, 8, and %.

The maximum likelihood estimator & is the solution of

n X
n~t Yy 1og(E') = y(a). (17.90)
i=1
A median estimator a* is the solution of
Median( X)
g(————ﬁ——) = ¢(a*). (17.91)

Harner, Shyu, and Trutzer (1991) carried out simulation studies of robustness
of these estimators with respect to contamination of a gamma (a, 1) distribu-
tion by agamma(a,, 1) distribution. They took sample sizes n = 25, 75, with
a=125 and a =0.1,1,5,10; the proportions of contaminant [gamma
(a,, D] were p = 0,0.01,0.05, and 0.1. They concluded the following:

1 The moment estimator (&) "grestly overestimates” the value of a.

2 The maximum likelihood estimator (&) *is competitive except when
a =01~

3. The median estimator (a*) is'fairly stable over al combinationsof the
simulation parameters,” with positive bias for smal a, decreasing to
"negligible amounts™ as a or n increase.
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Harner, Shyu, and Trutzer (1991) also consider trimmed mean estimators
(&, 4,) satisfying the equation

ch'(ik, log( X;/B)
n—[6;n+ 3] —[8,n] -1

= y(a), (17.92)

where X; is the ith order dtatistic among X,,..., X,, k; =[6,n t 11+ 1
and k, = n — [8,n] — 1. Simulations were carried out for the same values of
the parameters as for &, &, and a*, with

(6,,68,) = (0.025,0.075) and (0.0,0.1).

The trimmed means gave good results with (8,, 8,) = (0.025,0.075), and it
was suggested that a trimmed mean, omitting the first few order statistics,
might be used in place of the maximum likelihood estimator if a is thought
to be small (giving rise to observations near zero).

8 RELATED DISTRIBUTIONS
If Y hasthe standard uniform (rectangular) distribution
py(y) =1, O0<y<l, (17.93)
then Z = —log Y has the exponential distribution
pz(2) =e7%, 0<z, (17.94)

which is a special form of gamma distribution. If Y;,Y,,...,Y, areindepen-
dent random variables, each distributed as Y, and Z; = —logY; (j =
,k), then Z,, = Z 1Z; has a gamma dlstrlbutlon with parameters
a k B=21vy=0. [ZZ(k) is distributed as x2,; see Chapter 181 Relation-
ships between gamma and beta distributions are described in Chapter 25 (see
also Section 6 of this chapter).
Apart from noting these interesting relationships, we will devote this
section to an account of classes of distributions that are related to gamma
distributions, in particular

1 truncated gamma distributions,
2 compound gamma distributions,

3 transformed gamma distributions especialy the generalized gamma
distributions (which are assigned a special section of their own),

4. distributions of mixtures, sums, and products of gamma variables.
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81 Truncated Gamma Distributions

The most common form of truncation of gamma distributions, when used in
life-testing situations, is truncation from above. This is omisson of values
exceeding a fixed number 7, which is usually (though not always) known. If 7
is not known, and the distribution before truncation is of the general form
(17.1), there are four parameters (a, B,y,7) to estimate, and technical
problems become formidable. However, it is not difficult to construct fairly
simple (but quite likely not very accurate) formulas for estimating these
parameters.

Fortunately it is often possible to assume that y is zero in these situations
[see Parr and Webster (1965) for examples], and we will restrict ourselves to
this case. We will suppose that we have observations that can be regarded as
observed values of independent random variables X,, X,,..., X,,, each hav-
ing the probability density function

xa—le—-x/ﬂ

Tt g 1/B gr’ O0<xx<r. (17.95)

This may be denoted as a gamma (a, Bl7) distribution. Estimation of the
parameters a and B has been discussed by Chapman (1956), Cohen (1950,
1951), Das (1955), Des Raj (1953), and lyer and Singh (1963).

The moments of distribution (17.95) are conveniently expressed in terms
of incomplete gamma functions:

HAX) =BT, g(a+r) /T, 5(a). (17.96)

Gross (1971) notes that this is an increasing function of both a and B and,
further, that y,, /4, is an increasing function of a for r > 0.
The preceding results imply that

f . PT
0< M S m fordl a> O, (1797)
l"’lr+: 7°
—<(Btr)—— foradl a> 0. (17.98)
M, ﬁ +r+s

Nath (1975) obtained the minimum variance unbiased estimator of the
reliability function (R(¢t) = Pr{ X > ¢]) for the gamma (a, Bl7) distribution
with integer a. In his analysis he showed that the sum of » independent
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gamma(a, B|7) variables, ¥, = X, * -.. +X, has oof

cH{I(a)}"

_ T eV/B
B™I'(na)

py(yla,B;7) =

8 ré{)(_l)r(:'l)(y N rT)na_lo(na - 1’ - )

y—rr

for kyr <y < (k, T 1)r;k=0,1,...,n -1, (17.99)

with

T rls(r)l F s(r)

o275 ) - 5 gy Gy o 52w
(17.100)

where s(r) = E;=0 jr;; the multmomnal summation C* isover all nonnegative
F=0g.e, 1)%ﬂtlsfylng):"‘ or; =T.

The formula for the MVU estimator of R(t) appears to be extremely
cumbersome, although Nath (1975) claims that "it is not so in practical
application, particularly when the sample size is small."

As 7 - », the digtribution of Y, tends to gamma (na, B), as is to be
expected. The MVU estimator of R(¢) tends to the incomplete beta function
ratio I, ,y(a, (n — 1a), corresponding to Basu's (1964) MVU estimator of
R(1), Wlth corrected factorial term. [See also Wani and Kabe (1971), and for
exponential distributions, Pugh (1963).]

82 Compound Gamma Distributions

Starting from (17.1), compound gamma distributions can be constructed by
assigning joint distributions to a, B, and y. The great mgjority of such
distributions used in applied work start from (17.2) (i.e., with y = 0) and
assign a distribution to one of aand B (usualy g).

If g~! itsalf be supposed to have a gamma (6, b~ 1) distribution with

baxs—le—xb

pg-1(x) = W’ O1x, (17.101)

the resulting compound distribution has probability density function

I'(a +9)

px(x) = ROWOR Y x+ 1) 0<x (17.102)
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