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Gamma Distributions 

1 DEFINITION 

A random variable X has a gamma distribution if its probability density 
function is of form 

This distribution-denoted gamma (a ,  P,  y)-is Type I11 of Pearson's system 
(Chapter 12, Section 4). It depends on three parameters a ,  P, and y. If 
y = 0, the distribution is termed a two-parameter gamma distribution, de- 
noted gamma (a ,  p); see equation (17.23). 

The standard form of distribution is obtained by setting P = 1 and y = 0. 
This gives 

If a = 1, we have an exponential distribution (see Chapter 19). If a is a 
positive integer, we have an Erlang distribution. 

The distributions of Y = -X, namely 

and 
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are also gamma distributions. But such distributions rarely need to be 
considered, and we will not discuss them further here. 

The probability integral of distribution (17.2) is 

This is an incomplete gamma function ratio. The quantity 

is sometimes called an incomplete gamma function, but this name is also quite 
commonly applied to the ratio (17.3) (Chapter 1, Section 3). 

This ratio depends on x and a ,  and it would be natural to use a notation 
representing it as a function of these variables. However, Pearson (1922) 
found it more convenient to use u = xa-'I2 in place of x for tabulation 
purposes, and he defined the incomplete gamma function as 

The main importance of the (standard) gamma distribution in statistical 
theory is the fact that if U,, U2, . . . , Uu are independent unit normal variables, 
the distribution of C;= ,q2  is of form (17.1) with a = v/2, P = 2, and y = 0. 
This particular form of gamma distribution is called a chi-square distribution 
with v degrees of freedom. The corresponding random variable is often 
denoted by X:, and we will follow this practice. It is clear that aC;, ,q2 has a 
standard gamma distribution with a = v/2. Expressed symbolically: 

Although in the definition above v must be an integer, the distribution (17.6) 
is also called a "x2 distribution with v degrees of freedom" if v is any 
positive number. This distribution is discussed in detail in Chapter 18. 

2 MOMENTS AND OTHER PROPERTIES 

The moment generating function of the standard gamma distribution (17.2) is 

m 

e[e tx ]  = { T ( ~ ) ) - ' /  x a ' e x p [ - ( 1  - t ) x ]  dr = (1  - t)-", t < I. 
0 

(17.7) 

The characteristic function is (1 - it)-". 
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Since distributions of form (17.1) can be obtained from those of form 
(17.2) by the linear transformation X = (X' - y)/P, there is no difficulty in 
deriving formulas for moments, generating functions, and so on, for (17.1) 
from those for (17.2). 

The formula for the rth moment about zero of distribution (17.2) is 

From (17.8) cumulants can be obtained. These are very simple: 

Hence for distribution (17.2) 

The mean deviation of distribution (17.2) is 

The standard distribution (17.2) has a single mode at x = a - 1 if a 2 1. 
[Distribution (17.1) has a mode at x = y + P(a - I).] If a < 1, pX(x) tends 
to infinity as x tends to zero; if a = 1 (the standard exponential distribution), 
limx + ,, pJx) = 1. 

There are points of inflexion, equidistant from the mode, at 

(provided that the values are real and positive). The standardized variable 

is referred to as the frequency factor by hydrologists in flood frequency 
analysis [see, e.g., Phien (1991) or Chow (196911. 



2 

340 GAMMA DISTRIBUTIONS 

j 
Vodg (1974) studies a reparametrized version of the gamma distribution , 

(17.1), with y = 0, whose pdf is 1 

4 

Some typical probability density functions are shown in Figures 17.1 and 17.2. 
I 

Figure 17.2 shows three different gamma distributions (17.11, each having the - 
same expected value (zero) and standard deviation (unity). 

a = 1; 14x1 = em[-(x + 111 (x > - 1) Mode at - 1 
8 

a = 4 ;  p ( x ) = - ( ~ + 2 ) ~ e x p [ - 2 ( ~ + 2 ) 1  ( x > - 2 )  Modeat-; 
3 
2187 

a = 9 ;  p (x )=  -(x+3) 'exp[-3(~+3)] ( x >  -3) Modeat - +  
4480 

It can be seen from Figure 17.1 that, as a increases, the shape of the curve 
becomes similar to the normal probability density curve. In fact the standard- 
ized gamma distribution tends to the unit normal distribution as the value of 
the parameter a tends to infinity: 

for all real values of u, where N u )  = (2~)-'/~/!!, exp(- i t 2 )  dt. 
A similar result holds for the general distribution (17.11, namely 

It can be checked from (17.10) and (17.11) that a, + 0, a, + 3 (the values 
for the normal distribution) as a, v, respectively, tend to infinity. 

One of the most important properties of the distribution is the reproduc- 
tive property: If XI, X, are independent random variables each having a 
distribution of form (17.1), with possibly different values a', a" of a ,  but with 
common values of p and y, then (X, + X,) also has a distribution of this 
form, with the same value off?, double the value of y, and with a = a'+ a'! 
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8- 1 8-2 8= 4 

Figure 17.1 Gamma Density Functions 

For distribution (17.2) Gini's concentration ratio is 

The Lorenz concentration ratio is 
i 
I L = 2Bo,(a, a + 1)' 
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\ -, , - unit normal 
distribution 

Figure 17.2 Standardized Type 111 Density Functions 

ff = 1; P ( X )  = exp[ - (x  + I)] ( X  > - 1) Mode at - 1 
ff = 4; P ( X )  = ( 8 / 3 X x  + 2)3 exp[ -2 (x  + 2)] ( x  > - 2)  Mode at - 1 / 2  

= 9; P ( X )  = (2187/4480Xx + 318 exp[-3(x + 3)]  ( x  > - 3 )  ~~d~ at - 1 / 3  

where BJa,  b) = j,Py "-'(l - ylb-' dy is the incomplete beta function. The 
Pietra ratio is 

aae-a 
= {II(. + 2 ) )  ,F1(2, a + 2; a ) .  

The Theil entropy measure of inequality is 

[*(a) = d log r(a)/da] [Salem and Mount (1974); McDonald and Jensen 
(1979)l. Saunders and Moran (1978) show that the E-quantile of the gamma 
distribution (17.1), denoted by yela, where 

has the property that when 1 > E ,  > E, > 0, the ratio ya = yE21a/yE,,a is a 
decreasing function of a and thus the equation 

Ya = b 
has a unique solution, 4(b) for any b E (1, m). Moreover ya -, 1 as a + m. 

The reproductive property is utilized, among other things, for deter- 
mination of gamma priors in Bayesian reliability analysis [see Waller and 
Waterman (1978)l. Also ye,,, - ye,,a increases with a ,  implying that the 
gamma distributions are "ordered in dispersion" (see Chapter 33). 
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3 GENESIS AND APPLICATIONS 

Lancaster (1966) quotes from Laplace (1836) in which the latter obtains a 
gamma distribution as the posterior distribution of the "precision constant" 
(h = (Chapter 13, Section 1) given the values of n independent 
normal variables with zero mean and standard deviation u (assuming a 
"uniform" prior distribution for h). Lancaster (1966) also states that 
Bienaym6 (1838) obtained the (continuous) X2 distribution as the limiting 
distribution of the (discrete) random variable C f - l ( ~  - npi)2(npi)-1, where 
(N,, . . . , N,) have a joint multinomial distribution with parameters 
12, PI, P2,. a ,  Pk. 

The gamma distribution appears naturally in the theory associated with 
normally distributed random variables, as the distribution of the sum of 
squares of independent unit normal variables. (See Chapter 18.) The use of 
the gamma distribution to approximate the distribution of quadratic forms 
(particularly positive definite quadratic forms) in multinormally distributed 
variables is well established and widespread. One of the earliest examples 
was its use, in 1938, to approximate the distribution of the denominator in a 
test criterion for difference between expected values of two normal popula- 
tions with possibly different variances [Welch (193811. It has been used in this 
way many times since. The use of gamma distributions to represent distribu- 
tions of range and quasi-ranges in random samples for a normal population 
has been discussed in Chapter 13. In most applications the two-parameter 
form (y = O), 

is used (this is equivalent to approximating by the distribution of 
However, the three-parameter form has also been used with good effect [e.g., 
see Pearson (196311. 

The gamma distribution may be used in place of the normal distribution as 
"parent" distribution in expansions of Gram-Charlier type (Chapter 12, 
Section 4.2). Series with Laguerre polynomial multipliers rather than Her- 
mite polynomial multipliers are obtained in this situation. Formulas for use 
with such expansions and their properties have been described by Khamis 
(1960). These Laguerre series have been used by Barton (1953) and Tiku 
(1964a, b) to approximate the distributions of "smooth test" (for goodness-of- 
fit) statistics and noncentral F (Chapter 30). 

In applied work, gamma distributions give useful representations of many 
physical situations. They have been used to make realistic adjustments to 
exponential distributions in representing lifetimes. The "reproductive" prop- 
erty (mentioned in Section 1) leads to the appearance of gamma distributions 
in the theory of random counters and other topics associated with random 
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processes in time, in particular in meteorological precipitation processes 
[Kotz and Neumann (1963); Das (19591. Some other applications from 
diverse fields are described in papers cited in references. Among the latter 1 
papers Salem and Mount (1974) provide a comparison of the gamma and 
lognormal distributions and demonstrate that the gamma distributions pro- 1 
vides a better fit for personal income data in the United States for the years 1 

I 
1960 to 1969. 

Dennis and Patil (1984) discuss applications of gamma distribution in 1 
statistical ecology (standard model for sampling dispersion). Among more : 

recent applications we note Costantino and Desharnais's (1981) empirical fit 
of the steady-state abundances of laboratory flour beetle (Tribolium) popula- 
tions. Dennis and Patil (1984) generalize this result and show that a gamma 
distribution is an approximate stationary distribution for the abundance of a 
population fluctuating around a stable equilibrium. Starting from the stochas- 
tic model of population growth 

where n is population density at time t, g(u) is the specific growth rate, z(t) 
is a Gaussian process (noise) with variability a2, and h(n) is a function 
specifying the density dependence on the effects of the noise, Dennis and 
Patil (1984) approximate Wright's formula for the equilibrium pdf by a 
gamma distribution emphasizing its right-skewness in the distribution of 
single-species abundances at equilibrium and its positive range. Then, modi- 
fying their deterministic model from du/dt = ng(u) to du/dt = n[g(u) - 
p(u)], where p(u) is a specific rate describing the effects of predation, 
harvesting and other forces, Dennis and Patil (1984) arrive at a weighted 
gamma distribution for the equilibrium pdf. 

Gamma distributions share with lognormal distributions (Chapter 14) the 
ability to mimic closely a normal distribution (by choosing a large enough) 
while representing an essentially positive random variable (by choosing 
y r 0). 

4 TABLES AND COMPUTATIONAL ALGORITHMS 

In 1922 there appeared a comprehensive Tables of the Incomplete r-Function, 
edited by Pearson (1922). This contains values of Z(u,p) [see (17.5) with 
a = p + 11 to seven decimal places for p = - 1(0.05)0(0.1)5(0.2)50 and u at 
intervals of 0.1. These are supplemented by a table of values of 

for p = - 1(0.05)0(0.1)10 and u = 0.1(0.1)1.5. This function was chosen to 
make interpolation easier, particularly for low values of p (Section 5). 
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Harter (1964) published tables of Z(u,p) to nine decimal places for 
p = -0.5(0.5)74(1)164 and u at intervals of 0.1. In this work he covers a 
greater range of values of p and has two extra decimal places, although 
Pearson (1922) has p at finer intervals. Harter (1969) published further tables 
of Type 111 distributions, giving the 0.01, 0.05, 0.1, 0.5, 1, 2, 2.5, 4, 5, 10(10)90, 
95, 96, 97.5, 98,99, 99.5, 99.9, 99.95, and 99.99 percentage points to 5 decimal 
places for 6 = 0.0(0.1)4.8(0.2)9.0. Harter (1971) extends his 1969 tables 
and provides percentage points of the one-parameter gamma distribution 
(Pearson Type 111) corresponding to cumulative probabilities 0.002 and 0.998 
as well as 0.429624 and 0.570376. The first pair is used for determination of 
the magnitude of an event (flood) corresponding to 500-year return period, 
while the second corresponds to a return period of 32,762 years (the so-called 
mean annual flood according to the guidelines of the U.S. Department of 
Housing and Urban Development). These are the most important direct 
tables of Z(u, p). 

Pearson (1922) gave the more general formula for distribution (17.1): 

ya+j  

Pr[X I, x ]  = e -y  for y = ( x  - y)/P > 0. (17.24) 
j = o  

I'(a + j + 1) 

Salvosa (1929, 1930) published tables of the probability integral, probability 
density function and its first six derivatives for distribution (17.1), with P and 
y so chosen that X is standardized (i.e., f? = a3/2; y = -2/a,). Values are 
given to six decimal places for a, (= 2a-'I2) = O.l(O.1)l.l at intervals of 
0.01 for x .  Cohen, Helm, and Sugg (1969) have calculated tables of the 
probability integral to nine decimal places for a, = 0.1(0.1)2.0(0.2)3.0(0.5)6.0 
at intervals of 0.01 for x. BobCe and Morin (1973) provide tables of percent- 
age points of order statistics for gamma distributions. 

Thom (1968) has given tables to four decimal places of the distribution 
function T,(a)/I'(a): 

1. for  a = 0.5(0.5)15.0(1)36 a n d  x = 0.0001, 0.001, 
0.004(0.002)0.020(0.02)0.80(0.1)2.0(0.2)3.0(0.5)-the tabulation is con- 
tinued for increasing x until the value of the tabulated function 
exceeds 0.9900; 

2. values of x satisfying the equation 

for a = 0.5(0.5)15.0(1)36 and E = 0.01,0.05(0.05)0.95,0.99. Burgin 
(1975) provides some interesting numerical computations of the gamma 
and associated functions. He cites the following representation for the 
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incomplete gamma function ratio: 
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Lau (1980) uses a series expansion similar to Wilk, Gnanadesikan, and 
Huyett (1962a) to calculate the incomplete gamma function ratio. Moore 
(1982) finds this series expansion not always satisfactory. Bhattacharjee 
(1970) provides an alternative algorithm. Phien (1991) presents an algorithm 
for computing the quantile y,,,. Newton's method seems to be appropriate to 
solving the equation 

Efficient computation requires a powerful algorithm for computing the in- 
complete gamma function ratio and a good initial value yo.  Phien used 
Moore's algorithm (1982) for calculation of the incomplete gamma function 
ratio and the approximate value provided by Hoshi and Burges (1981) is used 
for the initial value yo. 

Moore's algorithm is highly accurate. In the experiment conducted by 
Phien (1991) Moore algorithm's value agreed with those values tabulated by 
E. S. Pearson (1963) up to the sixth decimal place. 

5 APPROXIMATION AND GENERATION OF GAMMA RANDOM 
VARIABLES 

The best-known approximations for probability integrals of gamma distribu- 
tions have been developed in connection with the X 2  distribution. Modifica- 
tions to apply to general gamma distributions are direct, using the linear 
transformation y = 2(x  - y)/P.  The reader should consult Section 5 of 
Chapter 18. 

From (17.25) it may be observed that for u small, U-(P+')I(U, p )  is very 
approximately, a linear function of u. It is for this reason that the values 

tabulated by Pearson (1922) lead to relatively easy interpolation. Gray, 
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Thompson, and McWilliams (1969) have obtained the relatively simple ap- 
proximation: 

which gives good results when x is sufficiently large. 
If Y has the standard uniform distribution (Chapter 26, Section 1) 

then (- 2log Y) is distributed as X2 with 2 degrees of freedom. If 
Y,, Y,, . . . , Y, each have distribution (17.27) and are independent then 
C;, - 2 log 5 )  is distributed as X Z s ;  that is, it has a gamma distribution with 
a = S, p = 2, and y = 0. Using this relation, it is possible to generate gamma 
distributed variables from tables of random numbers. Extension to cases 
when a is not an integer can be effected by methods of the kind described by 

I Bhnkovi (1964). 
c If X has distribution (17.21, then the moment generating function of log X 

is 

i Hence the rth cumulant of log X is 
1 

Note that for a large 

which may be compared with 

The distribution of log X is more nearly normal than the distribution of X. 
Although this approximation is not generally used directly, it is often very 
useful when approximating the distributions of functions of independent 
gamma variables. 

For example, suppose that X,, X,, . . . , Xk are independent variables, 
each distributed as x2 with v degrees of freedom. Then the distribution of 



may be approximated by noting that 

log R, = max(1og XI, .  . . , log X,) - min(1og XI , .  . . , log X,) 

is approximately distributed as the range of k independent normal variables 
each having the same expected value, and standard deviation 

[See also (17.107).] 
Gray and Schucany (1968) and Gray and Lewis (1971) apply the method of 

H- and B,-transforms (see Chapter 12, Section 4) to approximate the tail 
probabilities of chi-squared (and hence of gamma) distributions. Alfers and 
Dinges (1984) sought an approximate normalizing transformation. They ob- 
tained a polynomial expression. 

A recent survey of approximations for gamma distribution quantiles is ; 
contained in a paper by Phien (1991). He notes that for a variable X with pdf 4 

4 given by (17.2), the standardized variable is W = ( X  - a)/,/a (for which 
E[ W] = 0, Var(W) = 1, and \Im = 2/,/a). The Wilson-Hilferty chi- ; 
squared approximation (see Chapter 18, Section 5)  gives 

where @(z,) = E .  When a is small (skewness is large), the values of WE given 
by (17.33) are too low. 4 

Kirby (1972) modifies (17.33) and obtains the following approximation: 

W, = A(U - B ) ,  (17.34) 

where A = max(,/a, 0.40), B = 1 + 0.0144 [max(O, 2a-'I2 - 2.25)12, and 

with 

Kirby (1972) provides tables to assist in the calculation of A, B, and D. 
Kirby's approximation was in turn modified by Hoshi and Burges (1981) who 
express A, B, B -Ada, and D as polynomials of degree 5 in a-'I2. Phien 
(1991) reproduces the values given by Hoshi and Burges (1981). Harter (1969) 
provided tables of exact values of We, to which BobCe (1979) fitted polynomi- 
als in cr-'12 of degree four. For ,/PI = 2/,/a < 4 (i.e., a > $1 BobCe's 
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approximation is superior to those of Hoshi and Burges (1981) and Kirby 
(1979), but it is not satisfactory for smaller values of a. 

Tadikamalla and Ramberg (1979, Wheeler (1979, and Tadikamalla (1977) 
approximate the gamma distribution (17.2) by a four-parameter Burr distri- 
bution (see Chapter 12, Section 4.5) by equating the first four moments-ex- 
pected value, variance, skewness, and kurtosis. 

For the Burr distribution with cdf, 

the loop% points of the largest and smallest order statistics from a random 
sample of size n are 

respectively. These equations give good approximations to the corresponding 
value for the appropriate gamma distributions. Tables are available from 
Tadikamalla (1977) to facilitate calculation of appropriate values for a, b, k, 
and c. 

Values of c and k for given values of a are given in Tadikamalla and 
Ramberg (1975) and Wheeler (1975). These two papers were published in the 
same issue of the same journal, and yet they do not cross-reference each 
other. (Fortunately the values of c and k given in the two papers agree.) 

Many papers on generation of gamma random variables have been written 
in the years 1964 to 1990. It is impossible to survey them in detail. We draw 
attention to Ahrens and Dieter (1974, "GO algorithm"), Fishman (1976), 
Johnk (19641, Odell and Newrnan (1972), Wallace (1974), and Whittaker 
(1974)-a11 are based on the general von Neumann rejection method. Cheng 
and Feast (1979, 1980) use the ratio of uniform random variables on the lines 
suggested by Kinderman and Monahan (1977). 

Bowman and Beauchamp (1975) warn of pitfalls with some gamma distri- 
bution simulation routines. They note that an algorithm given by Phillips and 
Beightler (1972) does not actually generate random variables with gamma 
distributions, but rather with Weibull distributions (see Chapter 21). 

6 CHARACTERIZATIONS 

If Xl and X, are independent standard gamma random variables [i.e., 
having distributions of form (17.2), possibly with different values of a ;  a,, a,, 
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say], then the random variables 
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X, + X2 and 
1 

Xl + x2 

are mutually independent. [Their distributions are, respectively, a standard 
gamma with a = a1 + a2 and a standard beta (Chapter 25) with parameters 
ffl, ff2.1 

Lukacs (1965) showed that this property characterizes the gamma distribu- 
tion in that, if XI and X2 are independent positive random variables, and 
XI + X2 and Xl/(Xl + X2) are mutually independent, then X, and X2 
must each have gamma distributions of form (17.1) with y = 0, common P,  
but possibly different values of a. If it be assumed that XI and X2 have 
finite second moments and identical distributions, it is sufficient to require 
that the regression function 

a , , ~ ;  + 2a12XlX2 + a, ,~:  
Xl + X2 7 a,, + a22 # 2~12,  1 

be independent of XI + X2 to ensure that the common distribution is a 
gamma distribution [Laha (1964)l. 

Marsaglia (1974) extended Lukacs's result by removing the condition that 
Xl and X, should be positive. He shows that "If Xl and X2 are independent 
nondegenerate random variables, then X1 + X2 is independent nf X1/X2 if 
and only if there is a constant c such that cX, and cX2 have standard gamma 
distributions." Marsaglia (1989) provides a simpler proof of this result. He 
uses a method of deriving Lukacs's (1965) result, which was developed by 
Findeisen (19781, without use of characteristic functions (although a dis- 
claimer, suggested by the referees of the Findeison paper, claims that 
characteristic functions are implicit in the argument). Marsaglia (1989) also 
remarks that the "XI + X2, Xl/X2" characterization has been used in devel- 
oping computer methods for generating random points on surfaces by projec- 
tions of points with independent (not necessarily positive) components. 

Earlier Marsaglia (1974) had obtained the following rc.'. It "Let 
X,, X2, . . . , X,, ( n  r 2) be independent random variables. Then :ctor 

where S,, = C7=,Xj, is independent of S,, if and only if there is constant c 
such that cX,, cX2, . . . , cX,, are gamma." Wang and Chang (1977) used this 
result to develop several sensitive nonparametric tests of exponentiality. 
Many multivariate generalizations of these results are surveyed in Wang 
(1981). 
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On the one hand, the distribution of Xl/X2 is not sufficient to establish 
that each IX,J has a gamma distribution. If Xj is distributed as standard 
gamma (a,), ( j  = 1,2) and X, and X2 are mutually independent then the 
probability density function of G = X1/X2 is 

which is a Pearson Type VI distribution (see Chapter 12 and also Chapter 
25). However, it is possible for XI and X2 to be independent, identically 
distributed positive random variables, and for G = Xl/X2 to have distribu- 
tion (17.36), without each Xi having a gamma distribution [Laha (1954); 
Mauldon (1956); Kotlarski (1962, 196511. However, Kotlarski (1967) showed 
that the joint distribution of ratios X1/X3, X2/X3 (in a similar situation) 
does characterize the distribution (up to a constant multiplier). 

It follows that any result depending only on the distribution (17.36) of the 
ratio Xl/X2 cannot characterize the distribution of each X,. In particular, it 
cah be shown that if X, and X2 are independent and identically distributed 
as in (17.21, then 

has a t,, distribution (as defined in Chapter 28), although this property is not 
sufficient to establish the form of the common distribution of XI and X2 

. (given they are positive, independent, and identically distributed). 
However, if X3 is a third random variable (with the same properties 

relative to X, and X2), then the joint distribution of 

is sufficient to establish that common distribution is a gamma distribution 
with y = 0. [Kotlarski (1967).] 

Khatri and Rao (1968) have obtained the following characterizations of 
the gamma distribution, based on constancy of various regression functions: 

1. If X,, X2, . . . , Xn (n 2 3) are independent positive random variables 
and 
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with the (n - 1) x n matrix (bji) ( j  = 2,. . . , n, i = 1,2,. . . , n) nonsin- 
gular, then the constancy of 

ensures that the X's must have a common gamma distribution (unless 
they have zero variances). 

Setting b,, = b12 = . . - = b,, = 1 and bj, j-, = - 1, bj,, = 1, with 
all other b's zero, the condition becomes the constancy of 

2. In the conditions of 1, if E[xJ:'1 + 0 ( j  = 1,2,. . . , n) and 

with the b's satisfying the same conditions as in 1, then the constancy of 

ensures that each Xj has a gamma distribution (not necessarily the 
same for all j), unless they have zero variances. Choosing special values 
of b's as in 1, we obtain the condition that EIC~-,XJ:'lX, - 
XI,. . . , Xn - XI] should be constant. 

3. Under the same conditions as in 1, if E[X, log X,] is finite, then the 
constancy of 

with C7,1ajbj = 0, Ib,l > max(lb,l, Ib,l,. . . , lb,-,I), and ajbj/anbn < 
0 for all j = 1,2, . . . , n - 1 ensures that XI has a gamma distribution 
(unless it has zero variance). 

As a special case, setting a, = a, = . . = a, = 1, b, = n - 1, b1 
- = b, = . - . - bn-, = - 1, we obtain the condition as the constancy of 
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4. If XI,. . . , X,, are independent, positive, and identically distributed 
random variables, and if E[XL11 # 0 (i = 1,2,. . . , n) and 

is constant with the same conditions on the a's and b's as in 3, the 
common distribution of the X's is a gamma distribution (unless it has a 
zero variance). 

Giving the a's and b's the same special values as in 3, we obtain the 
condition of constancy of 

where = n - ' Q = , q .  

Khatri and Rao (1968) have also obtained a number of further conditions 
characterizing gamma distributions. Hall and Simons (1969) have shown that 
if X and Y are mutually independent and nondegenerate, and if 

E[X'(X + Y)-'~X + Y] and E[Y'(X + Y)-'~X + Y] 

do not depend on X + Y, then either X and Y or -X and -Y have 
i two-parameter gamma distributions with a common value of the scale param- 
i eter p. 
F 

C The following characterization based on conditional expectation was sug- 
gested by Wang (1972): "If $ = (bjk) be a n X n real matrix satisfying E 

n x bjj = 1 and x bjk = c # 0, 
j -  1 i, k 

X = (XI, X,, . . . , X,)' is a n x 1 random vector, Q* = X'BX, and L = C'X, 
where C = (c,, c,, . . . , c,)' is an n X 1 real vector such that C;=,cj = 1 and 
cj = ck # 0 for some j, k, then provided the distribution F of Xi 
(i = 1,2,.  . . , n )  is nondegenerate, the conditional expectation E[Q*IL] is 
zero almost everywhere if and only if each Xi has a gamma distribution." If 
N is a random variable defined by 

and 
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where X,, X,, . . . , Xn are independent random variables each having distri- 
bution (17.1) with a an integer and with y = 0 (Erlang distribution), then N 
has the generalized Poisson distribution (Chapter 9, Section 3) 

Nabeya (1950) showed that for a = 1, the converse is true. That is to say, 
it is a characterization of the common distribution of XI, .  . . , Xn (exponential 
in this case) given that they are positive, independent, identically distributed, 
and continuous. Goodman (1952) extended the result to apply to any positive 
integer value of a I 2, thus providing a characterization of a gamma distri- 
bution. 

Under conditions (4), Linnik, ~ u k h i n ,  and ~tzelic (1970) characterize the 
gamma distribution by the property 

E(Pk(?, . . . , $1 ISn) does not depend on Sn = Xj, 
j =  1 

where P, is a polynomial of degree k, n 2 2, and n > k. Some conditions on 
the behavior of the cdf of the positive i.i.d. Xi and its derivative in an interval 
[O, E ]  were required to prove the validity of this result. 

If XI, X,, . . . , Xn are independent gamma variables with the same scale 
parameter pi, and S(Xl, X,, . . . , Xn) is a statistic invariant under the scale 
transformation X -, cX (for all c # O), then U = Cy,,Xj and S = 

S(Xl, X,, . . . , X,), are independent [Wang (1981)l. However, whether the 
gamma distribution can be characterized by the independence of U and S 
seems still to be an open problem. 

The following characterization has been proved by Wang (1981): Let 
XI,. . . , Xn (n > 2) be nondegenerate i.i.d. positive random variables and I, 
and I ,  be arbitrary nonempty subsets of (1,2,. . . , n )  of size k I n/2. Define 
Tl = n,, ,,X, and T, = njo ,*Xi. If 

then the Xi's have a (two-parameter) gamma distribution (17.23). 
Characterization of gamma distributions by the negative binomial has 

been provided by Engel and Zijlstra (1980): 

Let events A occur independently and at random so that the number of events 
occurring in a given interval is a Poisson random variable with rate 8. The waiting 
time between events has a negative exponential distribution with mean 8- ' ,  and 
the total time T between r + 1 events has a gamma ( r ,  8-'1 distribution. 
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? P Consider now a second process independent of the first in which events B occur at 
K 

:$ an average rate p. If we start from a specified instant and count the number NB of 
8 B events occurring before the rth A event, the distribution of N, is negative 

f binomial with parameters r and p = a / (a  + p). 

Engel and Zijlstra (1980) have shown that T has a gamma ( r ,  a )  distribution 
if and only if NB has a negative binomial distribution. 

Letac (1985) characterizes the gamma distributions as follows: Given two 
positive independent random variables X and Y, if the distribution of Y is 
defined by its moments 

a+s  

E[Ys] = (1 + 3) for s > 0 

and a fixed given positive a ,  then X exp{( -X/a)Y) and X have the same 
distribution if and only if the distribution of X is gamma with shape 
parameter a [as in (17.2)l. Motivation for this characterization is that (W)"" 
and Uu have the same distribution provided U and V are independent 
uniform [O,l] variables. 

She (1988) has proved several theorems dealing with characterizations of 
the gamma distribution based on regression properties; see also Wesolowski 
(1990) for a characterization result based on constant regression, and Yeo 
and Milne (1991) for a characterization based on a mixture-type distribution. 

7 ESTIMATION 

Estimation of parameters of gamma distribution has also received extensive 
attention in the literature in the last two decades. The contributions of 
Bowman and Shenton and of A. C. Cohen and his coworkers should be 
particularly mentioned. Bowman and Shenton's (1988) monograph provides 
detailed analysis of maximum likelihood estimators for two-parameter gamma 
distributions with emphasis on the shape parameter and presents valuable 
information on distributions and moments of these estimators, including their 
joint distributions. Careful discussion of estimation problems associated with 
the three-parameter gamma density is also presented. The major emphasis of 
the monograph is on the distribution of sample standard deviation, skewness 
and kurtosis in random samples from a Gaussian density. The authors also 
deal with the moments of the moment estimators. The list of references in 
the monograph covers the development of the authors' work on this area 
from 1968 onwards. 

C. Cohen's contributions to estimation of parameters of the gamma 
ution are covered in the monographs by Cohen and Whitten (1988) 
alakrishnan and Cohen (1991) with an emphasis on modified moment 

timators and censored samples. As in Chapters 14 and 15 we will concen- 



356 GAMMA DISTRIBUTIONS 

trate on results not available in monographic literature and especially those 
discussed in less easily available sources. 

7.1 Three Parameters Unknown 

We will first consider estimation for the three parameter distribution (17.11, 
although in maIly cases it is possible to assume y  is zero, and estimate only a 
and /3 in (17.1). Given values of n independent random variables 
X I ,  X,, . . . , X,, each distributed as in (17.0, the equations satisfied by the 
maximum likelihood estimators 2, 6 ,  and f of a ,  P, and y, respectively, are 

n 

(X, - f )  - n 2 6  = 0, (17.37b) 
j=l 

From (17.37~) it can be seen that if 2 is less than 1, then some Xj9s must be 1 
less than f .  This is anomalous, since for x < y  the probability density / 
function (17.1) is zero. It is also clear that equations (17.37) will give rather 
unstable results if 6 is near to 1, even though it exceeds 1. It is best, 
therefore, not to use these equations unless it is expected that 2 is at least 
2.5, say. 

It is possible to solve equations (17.37) by iterative methods. A convenient 
(but not the only) method is to use (17.37a) to determine a new value for b, 
given 2 and f .  Then (17.37%) for a new 9,  given ai and B, and (17.37~) for a 
new 2, given f i  and q. 

The asymptotic variance-covariance matrix of 6 6 ,  6 6 ,  and 6f is the 
inverse of the matrix 

The determinant of this matrix is 
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Hence 

Using the approximation 

$'(a)  + a - l  + la--' + l a - 3  
r 2 6 3 (17.39) 
I 

we obtain the simple formulas, 

giving the orders of magnitude of the variances when a is large. Fisher (1922) 
obtained the more precise approximation: 

Var(6) = 6 n - ' [ ( a  - 113 + ; (a  - 1)]  (17.40) 

by using more terms in the expansion (17.39). 
If the method of moments is used to estimate a, p, and y ,  the following 

simple formulas are obtained: 

&p2 = m, ,  

2&p3 = m 3 ,  

where 
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are the sample mean, second, and third central moments. (Since this method 
would be used only when n is rather large, there is no need to attempt to 
make the estimators unbiased; it is also not clear whether this would improve 
the accuracy of estimation.) Note that (17.41a) and (17.37bY are identical. 
From equations (17.41) the following formulas for the moment estimators 
&, 6, and 7 are obtained: 

Although these are simple formulas, the estimators are often, unfortunatel~, 
considerably less accurate than the maximum likelihood estimators &, P, 
and 9. 

It can be shown that if n and a are large 

[Fisher (1922)l. Comparing (17.40) and (17.43), it can be seen that the ratio of 
approximate values Var(&)/Var(&) is substantially less than 1 unless a is 
rather large. The ratio 

increases with a and reaches the value 0.8 at a = 39.1. 
On the other hand, we have already noted that when a is less than 2.5, the 

maximum likelihood estimators are of doubtful utility. It then becomes 
necessary to consider yet other methods of estimation. When a is less than 1, 
the distribution is shaped like a reversed J, with the probability density 
function tending to infinity as x tends to y (see Figure 17.1). If n is large (as 
it usually is if a three-parameter distribution is being fitted), it is reasonable 
to estimate y as the smallest observed value among XI, X,, . . . , X,, or a 
value slightly smaller than this. Estimation of a and P then proceeds as for 
the two-parameter case, to be described later. Using the value of a so 
estimated, a new value for y can be estimated, and so on. 

As in the case of the lognormal and inverse Gaussian distributions 
(Chapters 14 and 151, Cohen and Whitten (1988) advocate the use of 
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modified moment estimators 

Tables and graphs to facilitate solution of (17.44~) are given by Cohen and 
Whitten (1986, 1988), Bai, Jakeman, and Taylor (1990). Note that (17.37b) 
and (17.37~) can be written as 

respectively. Assuming a value for 9, &(?), and @(?) can be computed, the 
corresponding likelihood L(?) calculated. The value of ? maximizing L(?) is 
then found numerically. [See Bai, Jakeman, and Taylor (1990).] 

Cheng and Arnin (1983) applied their maximum product of spacings (MPS) 
f 

I estimator method (see Chapters 12, 14, and 15) to provide consistent estima- 

1 tors of a ,  p,  and y. This method yields the following first-order equations: 

a log G -- = -log P - log +(a) 
aff 

n + l  /xi' - y)a-l  - ( x -  
+ xi-1 e log( x - y ) & 

a-1 - = 0, (17.46~) 
i = l  (n+l ) l$ -Xx-y)  e ( X - y ) / P &  

where X; I Xi I . . . I X; are the order statistics corresponding to 
XI,. . . , x,,. 
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7.2 Some Parameters Unknown 

We now consider estimation when the value of one of the three parameters 
a, p, and y is known. The commonest situation is when the value of y is 
known (usually it is zero). Occasionally a is known (at least approximately) 
but not p or y. Inadmissibility of standard estimators of gamma parameters 
in the case when y = 0 has received attention in the literature. 

Let XI, X,, . . . , Xk be independent random variables with two-parameter 
gamma distributions with parameters ai ,  pi (i = 1,. . . , k)  where the values 
of the ai9s are known but the pi's (> 0) are unknown. Berger (1980) 
considered weighted quadratic losses Cf=lp;m(~ip;' - 1)2 for m = 
0,2,1, - 1, and showed that the standard estimator of (PI, p2,  . . . , pk), namely 
(Xl/(al + I), . . . , Xk/(ak + 1)) is inadmissible for k r 2 except when m = 

0, in which case it is inadmissible for k 2 3. Ghosh and Parsian (1980) also 
discussed this problem for the same weighted quadratic losses. Gupta (1984) 
has shown that inadmissibility also holds for the loss function 

The vector of natural estimators (Xl/al,.  . . , Xk/ffk) is an inadmissible 
estimator of (PI,.  . . , pk) for k 2 3. It would seem, however, that the critical 
dimension for inadmissibility is typically 2; three dimensions are required 
only in special cases. The problem whether the natural estimator is admissi- 
ble for k = 2 is an open question. Zubrzycki (1966) has considered the case 
when p is known to exceed some positive number p,. He has shown that with 
a loss function (p* - p>,/p2, where p* denotes an estimator of P,  and given 
a single observed value of X, estimators 

with 

have minimax risk [equal to ( a  + I)-'] and are admissible in the class of 
estimators linear in X. 

If y is known, the maximum likelihood estimators of a and p might be 
denoted B(y), &y)A to indicate their dependence on y. We will, however, 
simply use B and p; no confusion between this use and that in Section 7.1 
should arise. 

If y is known to be zero, the probability density function is of form 
(17.23). If XI, X,, . . . , X,, are independent random variables each having 
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distribution (17.23), then equations for the maximum likelihood estimators 
&,p" are 

n 

n-' C log Xj = log p" + $(&), (17.48a) 
j=  1 

From (17.48b), 6 = x/&. Inserting this in (17.48a), we obtain the following 
equation for 6: 

n 

n-' C log Xj - log x = $(&) - log &; (17.48~) 
j=1 

that is, 

Arithmetic mean (XI ,  X, , . . . , X,) 
R, = log I = log & - $(&). 

Geometric mean (XI ,  X, , . . . , X,) 

(Note that R, 2 0.) 
It isAreadily seen that the estimator 6, of a the shape parameter, and the 

r!tio p/p are distributed independently of P. In particular, the variance of 
p/p does not depend on the parent population value of P. The value of & 
can be determined by inverse interpolation in a table of the function 
[log a - $(a)]. Such a table has been published by Masuyama and Kuroiwa 
(1952). Chapman (1956) has published a table giving the results of such 
inverse interpolation (i.e., values of 6) corresponding to a few values of the 
ratio of arithmetic to geometric mean. (He reported that a more complete 
table was available from the Laboratory of Statistical Research, University of 

and Durand (1960) pointed out that the function a[log a - 
$(a)] progresses much more smoothly than does [log a - $(a)] and so is 
more convenient for interpolation. They gave a table of values of a[log a - 
$(a)] as a function of a to eight decimal places for argument values 
0.00(0.01)1.40, and to seven decimal places for argument values 1.4(0.2)18.0. 
This method eliminates the necessity of inverse interpolation and assures 
high accuracy using linear interpolation. Bain and Engelhardt (1975) show 
that 2na log R, is approximately distributed as cX: for appropriate values of 

ding on n and a). For a 2 2 we have 2na log Rn approxi- 
ted as x,2-,. [See also (17.107).] 



n= 
Arithmetic mean - Geometric mean ' 

except when 6 is less than about 2. They give a table of solutions of equation 
(17.484 to five decimal places for 

For H > 1.001, linear interpolation gives four decimal place accuracy for 6. 
If 6 is large enough, the approximation $(a) = log(a - may be used. 

Then from (17.48~) we have 

Arithmetic mean 6 
= -. 

Geometric mean ' 6 - i ' 

that is, 

Arithmetic mean 
2 .i. = ; H .  (17.49) 

2(Arithmetic mean - Geometric mean) 

For a better approximation 1/12 (= 0.083) should be subtracted from the 
right-hand side. 

Thom (1968) suggests the approximation 

Thom further suggests adding the correction [(ST - 1x24 - 966,)-' + 
0.00921 if &, > 0.9, and gives a table of corrections for 6, < 0.9. It is stated 
that with these corrections the value of &, should be correct to three decimal 
places. 

Asymptotic formulas (as n -, 00) for the variances of 6 6  and fib,  and 
the correlation between these statistics, are 



ESTIMATION 363 

Masuyama and Kuroiwa (1952) give tables with values of a{a$'(a) - I)-' 
and $'(a){a$'(a) - I}-'. If the approximation $'(a) = ( a  - $1-', useful 
for a large, is used, we have 

Bowman and Shenton (1968) investigated the approximate solutions [due to 
Greenwood and Durand (196011 

The error of (17.53a) does not exceed 0.0088% and that of (17.53b) does not 
exceed 0.0054%. 

If a is known but not /3 or 7 ,  maximum likelihood estimators $ = $(a), 
f = +(a) satisfy equations (17.37bY and (17.37~)' with & replaced by a. From 
(17.37bY7 

and hence (17.37bY can be written as an equation for P,  

, Alternatively, using the first two sample moments, we have for moment 
I estimators @ = @(a) and = ?(a), 

i f = B - a @ ,  
b 

I ab2 = m, [cf. (17.41a) and (17.41b)], 
I 

whence 
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In this case ( a  known) for n large, 

~ a r ( b )  = p n - ' ,  

Var(9) = i p 2 a ( a  - 2)n-', (17.55) 

~ o r r ( b , + )  = - ( a  + 1) 
a + 3 

while 

: 
The advantage of the maximum likelihood estimators is not so great in this 
case as when all three parameters have to be estimated. 

Glaser (1976a) observes that the distribution of R, is the same as that of 
IIYL:~, where the v's are independently distributed beta random variables 
with parameters a and i / n  (i = 1,. . . , n - 1). Various methods for calcula- 
tion of the distribution of R, and its lower critical values are available in the 
literature. 

Provost (1988) provides expression for the jth moment of R, and provides 
an expression for its probability density function by inverting the Mellin 
transform. In their seminal paper and book Bowman and Shenton (1983, 
1988) provide an approximation to the distribution of R,, along with a new 
approximation to the inverse function 6 = 4-'(R,), namely 

This can be used when R, is not too small; if R, is small, the formula 

6 - (R, + log R,)-' (17.57b) 

is suggested. They also suggest using Thom's formula (17.50) as a starting 
value for an iterative procedure, calculating the mth iterate, 6, from the 
formula 

They observe that about ten iterations suffices for reasonable accuracy. 
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Bowman and Shenton (1983) also obtain the formula 

Ks(Rn) = ( - l)S{nl-s$(~-l)(a) - +(s-') (nu) ]  (17.59) 

for the sth cumulant of R,. As n -, w, 

n - 1  
' I  R n  % 7 

(17.60a) 

n - 1  
P2(Rn) - 2nZa"' (17.60b) 

(17.60~) 

12 
~ 4 ( R n )  " 3 +  - (17.60d) n - 1 '  

These values suggest that for n large R, is approximately distributed as 
X:-,/(2na). For n large 

n a  2 n - 1  7(n2 - 9) 
E [ & ]  - - + + 

n - 3 3(n - 3) 9(n - 3)na  54(n2 - 9)nZa2 

(n2 - 1)(26n3 + 33n2 - 324n - 707) + . . . , (17.61a) 
810(n2 - 9)(n + 5)n3a3 

2n2a2 2n(n + 1 ) a  - 
( n  - 312(n - 5) 3(n - 312(n - 5) 

(17.61b) 

(17.61~) 

- ... ) 
[~owrnan and Shenton (1988)l. (17.61d) 

an and Shenton (1982) give tables of coefficients of series expansions 
e expected value, variance and third and fourth central moments 
and 6 (terms up to n-6) for a = 0.2(0.1)3(0.2)5(0.5)15 and n = 
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Choi and Wette (1969) present results of sampling investigations. As an 
example, with a = 2 and P = 1 they obtain the average values (arithmetic 
means of 100 repetitions) shown below: 

The positive bias in & is to be expected from the expansion (17.61a). Note 
that the next term in the expansion is 

where 

The expansion is asymptotic in nature, so only limited accuracy can be 
expected from it's use. It is more accurate than an expansion simply in 
descending powers of n. 

Anderson and Ray (1975)' noting that the bias in & can be considerable 
when n is small, suggest using the following, less biased estimator based on 
(17.61a): 

For estimating 8 = P-', these authors suggest pp1f(&*), where 

Shenton and Bowman (1973) introduce the "almost unbiased" estimators 
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Dahiya and Gurland (1978) develop generalized minimum chi-squared esti- 
mators of a and p. Stacy (1973) proposed "quasimaximum likelihood" 
estimators for l/a and p,  

where Zi = x i / n X  ( i  = 1,. . , , n) .  
These estimators arise from the maximum likelihood estimators for Stacy 

and Mihram's (1965) generalized gamma distribution (see Section 8). The 
estimators are unbiased and 

The asymptotic efficiencies are for (l/aY 

and for 6 

Grouped data can be tested by standard methods. Rosaiah, Kantam, and 
Narasimham (1991) give a detailed analysis for fitting a two-parameter 
gamma distribution. They provide tables for optimum group length d,  in the 
sense of (1) minimum asymptotic generalized variance or (2) minimum sum of 
asymptotic variances, for a = 2(1)5 and number of groups, k = 2(1)10 for the 
cases when neither a nor p are known or when only a or only p is known. 
The group boundaries are 0, dp,  2dp, . . . , (k - I)  dp,  m. Since it is necessary 
to know both a and P to use the tables, they can be regarded as only 
providing a basis for intelligent selection of group length. Tables are also 
provided for use when group lengths may vary. 
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7.3 Estimation of Shape Parameter (p and y Known) 

Bowman and Shenton (1970) carried out an extensive study of the distribu- 
tional properties of two different estimators of the shape parameters, a ,  of 
the gamma distribution (17.2). These were as follows: 

1. The maximum likelihood estimator (MLE) 6. 
2. Thom's (1968) estimator BT [see (17.50)l. 

We recall that 6 is the solution of the equation 

while 

which is applicable when &, is not too small. 
3. The moment estimator 

The estimator (17.68) is much easier to compute than either 6 or 6,. All 
three estimators are unaffected by the value of the scale parameter (P ) .  
Dusenberry and Bowman (1977) compare these three estimators. In regard to 
6, they apply the techniques of David and Johnson (1951) to calculate the cdf 
of & by noting that 

It is not difficult to determine the moments of (X2 - as2). These are then 
used to approximate the required probability. Dusenberry and Bowman 
(1977) use the Cornish-Fisher expansion to evaluate percentage points of the 
distribution of &. They plot values of Pr[& < a] for 

Figure 17.3 is the plot for a = 2.0. 
The estimator BT is quite close to B. Although 6, has a slight systematic 

bias, this is offset by a somewhat lower variance and greater ease of 
calculation. The moment estimator & is much easier to compute than either 
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a .  

Figure 17.3 Pr[G < a ]  for CY = 2.0. 

a or d,  but has a greater bias and variance than either of these two 
estimators. As measured by #IlP, and P,, the distribution of & is closer to 
normality than that of either d or 8, for nearly all the values of a and n 
considered by Dusenberry and Bowman (1977). 

Blischke (1971) constructed a BAN (best asymptotically normal) estimator 
of a, when p is known, as 

Since & is a consistent estimator of a and 

E log - = *(a), [ (31 
the estimator d' is asymptotically unbiased. 

Results from 50 simulated samples of sizes n = 11, 31, and 51 are set out 
in Table 17.1, comparing values of 6 and &'. Note that d has a positive bias, 
except for the case where a = 2.00 and n = 31. Huque and Katti (1976) and 
Bar-Lev and Reiser (1983) discuss maximum conditional likelihood estima- 
tion of a. There is little to choose between the two estimators. Note the 

, generally positive bias of the maximum likelihood estimator. 
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Table 17.1 Results of Simulation for i and f 

BAN Estimator (a*') ML Estimator (2) 
Arithmetic Sample Arithmetic Sample 

a! n Mean Variance Mean Variance 

0.25 11 0.234" 0.00565" 0.269 0.0067 
31 0.243 0.00214 0.258 0.0020 
5 1 0.238 0.00088 0.252 0.0010 

0.50 11 0.530 0.0271 0.543 0.0219 
3 1 0.476 0.0059 0.498 0.0052 
51 0.494 0.0025 0.506 0.0045 

0.75 11 0.760 0.0480 0.773 0.0339 
31 0.743 0.0101 0.765 0.0135 
5 1 0.745 0.0063 0.747 0.0069 

1.25 11 1.228 0.0678 1.301 0.0879 
3 1 1.195 0.0204 1.257 0.0221 
51 1.253 0.0171 1.260 0.0172 

1.50 11 1.533 0.0958 1.537 0.1010 
3 1 1.487 0.0362 1.508 0.0355 
5 1 1.529 0.0233 1.525 00199 

2.00 11 2.063 0.121 2.036 0 iL70 
3 1 1.965 0.067 1.996 0.0514 
5 1 1.979 0.031 2.004 0.0321 

'Based on 48 values; in two cases negative estimates were obtained. 

7.4 Order Statistics and Estimators Based on Order Statistics 

A considerable amount of work has been done in evaluating the lower 
moments of order statistics Xi 5 Xi 5 . . 5 X; corresponding to sets of 
independent random variables XI,. . . , Xn having a common standard gamma 
distribution of form (17.2). Since y and are purely location and scale 
parameters, the results are easily extended to the general form (17.1). 
[Moments of order statistics of the exponential distribution (a = 1) are 
discussed in some detail in Chapter 19, Section 6.1 Tables of moments of 
order statistics from random samples of size n from the standard gamma 
distribution (17.2) are summarized in Table 17.2. 

We next note that Kabe (1966) has obtained a convenient formula for the 
characteristic function of any linear function Cy=lajX,! of the order statistics. 
The characteristic function is 
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Applying the transformation 

so that 0 < wj < 1 for j = 1,2,. . . , (n - 11, and w, > 0, we obtain the 
formula 

"!['(a)] -" /'/' o o . . . /l/m(fi wr-l)exp(-wnD(w)l dwn dwn-, . . . dw, 
0 1 j=l  

where 

Table 17.2 Details of Available Tables on Moments of Gamma Order Statistics 

Serial 
Shape Number ( j )  

Values Parameter Order of of Order Number 
Reference of n a Moments Statistics FiguresC 

Gupta (1961)" 1(1)10 ( 11(1)15 

Breiter and 1(1)16 
Krishnaiah (1968) 

Harter (1970) 1(1)40 

Prescott (1974) 2(1)10 

Walter and Stitt 1(1)25 
(1988) 1(1)5 

10(5)25 

Balasooriya and 1(1)10 
Hapuarachchi (1991)b (940 

"The values of BS (1992) occasionally differ from those of Gupta (1961) by more than 0.00001. 
b ~ h e  last of these references also includes covariances for n = 15(5)25, a = 2(1)5, extending 
Prescott (1974) which includes covariances for n = 2(1)10 and the same values of a. More 
extensive tables of expected values of order statistics for n = 15(1)40, cr = 5(1)8, and covariances 
for n = 2(1)25 and a = 2(1)8 are available on request from Balasooriya and Hapuarachchi 
(Memorial University of Newfoundland, St. John's). 
's.f. = significant figures; d.p. = decimal places. 
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The multiple integral can be expanded as a series of beta functions. Although 
we will not use it here directly, equation (17.71) is very convenient as a 
starting point for studying the distributions of linear functions of order 
statistics from gamma distributions. 

The distribution of X:, the rth smallest among n independent random 
variables each having distribution (17.21, has the probability density function 

In general, this expression does not lend itself to simple analytic treatment. 
However, if a is a positive integer, 

ry(a) a-1 
-- 

1 
- - l Y t a - l e - t d t  = 1 - e-y [cf. (17.24a)I 

r ( 4  r ( a )  0 j = o  

and so (17.72) becomes 

In this case it is possible to express all moments (of integer order) of X: and 
all product moments (of integer orders) of order statistics as finite sums of 
terms involving factorials, although these expression will usually be cumber- 
some. 

Johnson (1952) has obtained an approximation to the distribution of range 
(XA - X;) for random samples from (17.2). Tiku and Malik (1972) provide P1 
and p, values of the rth-order statistic Xi for the gamma distribution and 
compare them with approximate values obtained by equating the first three 
moments of xj with those of (X: + a)/g.  Numerical comparisons are 
presented in Table 17.3. The agreement is excellent except for a = 0.01. It is, 
however, doubtful whether any method of approximation based on moments 
can provide accurate values for the extreme lower tail, as the classical paper 
of E. S. Pearson (1963) indicated. 

Lingappaiah (1974) obtained the joint density of Xi and X,' (s > r), from 
the standard gamma distribution (17.0, and he derives from it that of the 
difference U,,, = Xi - X:. More recently Lingappaiah (1990) has obtained 
the distribution of U,,, in the presence of a single outlier-when n - 1 
observations are from a standard gamma a distribution but one observation 
is from a gamma a + 6 distribution. Typical values of Pr[Ur,, > u ]  under 
these conditions are shown in Table 17.4. 
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Table 17.3 Comparison of the Percentage Points of rth-Order Statistics 
from Standard Gamma Distribution with values from Tiku and Malik's 
(1972) Approximation (with a = 2, sample size n = 6)  

Upper Percentage Points 
50 75 90 

Exact 1.135 1.536 1.963 
' " 2(Approximate 1.135 1.535 1.962 

Exact 2.376 3.036 3.744 
' = 4(Approximate 2.370 3.040 3.754 

Lower Percentage Points 
25 10 05 

Exact 0.807 0.570 0.453 
' " '( Approximate 0.808 0.571 0.453 

Exact 1.829 1.423 1.214 
' = (Approximate 1.821 1.423 1.224 

As is to be expected, in Table 17.4 Pr[U,,, > u ]  increases with 6. Note that 
the values depend only on a u ,  so a single table (with a = 1) might suffice. 
Lingappaiah (1991) also provides tables (to 5 d.p.) with negative moments 
E[x:-'1 of the standard gamma a distribution for n = 2(1)5 with i = -(a - 
I), - (a - 2), . . . , - 1. As far as we know, the most general recurrence 
relationship in the literature for moments of order statistics from gamma a 
samples are those in Thomas and Moothathu (1991). 

These formulas relate values of (descending) factorial moments 

of the greatest X in a random sample of size n from the standard gamma 
distribution (17.1). The recurrence formula is 

n 2 2; k r max[l - a , n ( l  - a ) ] ,  (17.74) 

Table 17.4 Values of PrIU,,, > u ]  for n = 5, r = 1, s = 2 

(Y = 0.5 a = 1.0 

u 0.25 0.5 0.75 1 .O 0.25 0.5 0.75 1.0 

Note: Included are four observations from gamma a, one from gamma a + 6. 
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where 

A,,, = 1, 

Ar,, = -r-'(k - r + 1 + ( n  - r ) ( a  - l ))Ar-, , , ,  

= r-l(n - r )  Ar-l,r.  

If a is an integer, expected values and moments of the other orde 
statistics can be evaluated using Joshi's (1979) formula: 

with CL)~; = ~ ~ [ x r i  1 40) - 4) = 
kZn ; p k  : n  - 1; pozn 0 for i 2 1. Prescott (1974) show 

that 

where t = n - s + c + 1, q = b + s - r - c, and summation is over 0 
b ~ r - 1 ,  O s c ~ r - s - 1 ,  O I U I ( C Y - l ) ( t - I ) ,  O I U  
( a - l ) ( q - l ) , O s j < u + a , a n d  

n! 
C = 

( r  - l)!(s - r - l)!(n - s)! ' 

and where ag(h, i )  is the coefficient of zg  in the expansion of {ZF:,'(zj/j!) 
Gupta (1962) obtained recurrence formulas for the crude moments prl 

= E[ XL~: .I of the k th-order statistic (XA : These are 

where aj(a,, p )  is as defined in (17.76); see Balakrishnan and Cohen (199 
Prescott (1974) provided a table of variances and covariances of all ord 

statistics for n = 2(1)10 with a = 2(1)5 to four decimal places. (He used 
log-gamma computer routine, accurate to about ten decimal places, to avc 
errors occurring in tables prepared by Gupta (1962)-which have be 
ascribed to the way in which ratios of gamma functions were calculated.) 
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Using Gupta's tables (1962), it is possible to construct best linear unbiased 
estimators of the parameter j3 if a and y are known. Coefficients of such 
estimators have been given by Musson (1965). Coefficients for best linear 
unbiased estimators, not using all of the sample values have been given by 

1. Karns (1963) using only one-order statistic, 
2. Bruce (1964) using the least M values out of n, 
3. Hill (1965) using only the least number of order statistics Cfrom a 

complete or censored sample) to give a specified efficiency relative to 
the best linear unbiased estimator using all available order statistics, 

4. Sarndal (1964) using the best k-order statistics. (Sarndal also considers 
estimation of j3 and y, a being known.) 

I 

Returning now to situations where it is necessary to estimate all three 
parameters a ,  p, and y, we consider maximum likelihood estimation when 
the least r, and greatest r, of the X's have been censored. The maximum 
likelihood equations are [introducing 2j = (Xi' - ?)/@ for convenience] 

n - r 2  ( )  ( 6 )  
r~ ,~+1(6)  n -r2 C log 2j - n$'(&) + r2 + r, = 0, 

j = r , + l  r ( 6 )  - rfn-,J&) Gr1+1(&) 

n - r 2  

C log 2j - n$'lai 
j = r , + l  

The equations simplify if either r, = 0 or r, = 0. For the case r, = 0 
(censoring from above) a method of solving the equations is given by Harter 
and Moore (1965); also see Balakrishnan and Cohen (1991). 

Estimation is simplified if the value of y is known. Without loss of 
generality it may be arranged (if y is known) to make y = 0 (by adding, if 
necessary, a suitable constant to each observed value). For this case, with 
data censored from above (r, = O), Wilk, Gnanadesikan, and Huyett 
(1962a, b) have provided tables which considerably facilitate solution of the 
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maximum likelihood equations. They express these equations in terms of 

that is, the ratios of the geometric and arithmetic means of the available 
obseyed values to their maximum. The maximum likelihood equations for 6 
and p are 

a log ~ ( i )  
( n  - r,)log P = n [ $I(&) - log (xi-r2)] T - r2 d i  , (17.81a) 

where 

Note that r, a!d n enter the equations only in terms of the ratio r,/n, 
and and P only as the ratio XA-,,/P. AWilk, Gnanadesikan, and 
Huyett (1962b) provide tables, giving i and &P/XA-r2 to three decimal 
places for 

P = 0.04(0.04) 1.00, and S = 0.08(0.04) 1.00. 

The values for n/r2 = 1 of course correspond to uncensored samples. A 
special table, which we have already mentioned in Section 7.2, is provided for 
this case. Wilk, Gnanadesikan, and Lauh (1966) discuss generalizations and 
modifications of these techniques for estimation of an unknown common 
scale parameter based on order statistics from a sample of gamma random 
variables with known shape parameters not necessarily all equal. 

If a is known, it is possible to use "gamma probability paper," as 
described by Wilk, Gnanadesikan, and Huyett (1962a) to estimate P and y 
graphically. This entails plotting the observed order statistics against the 
corresponding expected values for the standard distribution (17.2) (which of 
course depends on a )  or, if these are not available, the values tj satisfying 
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the equations 

In the case of progressively censored sampling, Cohen and Norgaard (1977) 
and Cohen and Whitten (1988) suggest the following procedure for solving 
the maximum likelihood equations (in the case when a > 1): Let n denote 
the total sample size and D, the number of failing items, for which there are 
completely determined life spans. Suppose that censoring occurs in k stages 
at times TI < T, < . . < T, and that Cj surviving items are selected 
randomly and withdrawn (censored) from further observation at time I;.. 
Then 

The sample data consist of the ordered life span observations (Xi) (i = 

1,2,. . . , D), the censoring times {I;.} and the numbers of censored items {Cj}  
( j  = 1,2,. . . , k). The likelihood function is 

where K is a constant, and p,(.) and F,(.) are the pdf and cdf of the 
lifetime distribution, respectively. 

For the three-parameter gamma lifetime distribution (17.1), we have 

D 

log L = -DlogI'(a) - na log@ - /3-' (Xi - y )  
i = l  

where 
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The corresponding maximum likelihood equations are 

aiog L D D k cj a4 - = - - 
P 

( a -  1) z ( X i -  y)-l  - -- = 0 (17.88~) 
a~ i = l  j = l  1 - 5 ay 

[cf. (17.37a)-(17.37~) for the case of uncensored samples]. 
Evaluation of the partial derivatives of 4 with respect to a ,  P, and y and 

computational details are given in Cohen and Whitten (1988). They caution 
that convergence problems may arise in iterative solution of equations (17.88) 
unless a x-= 1 (in our opinion, a 2 2.5). Cohen and Norgaard (1977) assert 
that for a 2 4, the formulas can be used "without any hesitation." 

When a is less than 1, the likelihood function tends to infinity as y -, Xi. 
Cohen and Norgaard (1977) suggest setting an initial value 9 =Xi - $q, 
where q is "the precision with which observations are made," and then 
proceeding iteratively. They also provide c~mputational~details for calcula- 
tion of the asymptotic variance-covariance matrix of &, P,  and 9.  

The maximum likelihood estimator & is the solution of 

A median estimator a *  is the solution of 

Harner, Shyu, and Trutzer (1991) carried out simulation studies of robustness 
of these estimators with respect to contamination of a gamma (a,  1) distribu- 
tion by a gamma (a,, 1) distribution. They took sample sizes n = 25,75, with 
a = 1,2,5 and a, = 0.1,1,5,10; the proportions of contaminant [gamma 
(a,, 111 were p = 0,0.01,0.05, and 0.1. They concluded the following: 

1. The moment estimator (&) "greatly overestimates" the value of a. 

2. The maximum likelihood estimator (&) "is competitive except when 
a, = 0.1." 

3. The median estimator (a*) is "fairly stable over all combinations of the 
simulation parameters," with positive bias for small a ,  decreasing to 
"negligible amounts" as a or n increase. 
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Harner, Shyu, and Trutzer (1991) also consider trimmed mean estimators 
e2) satisfying the equation 

where Xi is the ith order statistic among XI,. . . , X,, k, = [B,n + + 1 
and k, = n - [e2n] - 1. Simulations were carried out for the same values of 
the parameters as for &, 8, and a*, with 

(e l ,  0,) = (0.025,0.075) and (0.0,o.l). 

The trimmed means gave good results with (el, 8,) = (0.025,0.075), and it 
was suggested that a trimmed mean, omitting the first few order statistics, 
might be used in place of the maximum likelihood estimator if a is thought 
to be small (giving rise to observations near zero). 

8 RELATED DISTRIBUTIONS 

If Y has the standard uniform (rectangular) distribution 

then Z = -log Y has the exponential distribution 

which is a special form of gamma distribution. If Y,, Y,, . . . , Yk are indepen- 
dent random variables, each distributed as Y, and Zj = -log? ( j  = 

1,. . . , k), then Z(,, = Cik,,Zj has a gamma distribution with parameters 
a = k, j3 = 1, y = 0. [2Z(,, is distributed as Xzk; see Chapter 18.1 Relation- 
ships between gamma and beta distributions are described in Chapter 25 (see 
also Section 6 of this chapter). 

Apart from noting these interesting relationships, we will devote this 
section to an account of classes of distributions that are related to gamma 
distributions, in particular 

1. truncated gamma distributions, 
2. compound gamma distributions, 
3. transformed gamma distributions especially the generalized gamma 

distributions (which are assigned a special section of their own), 
4. distributions of mixtures, sums, and products of gamma variables. 
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8.1 Truncated Gamma Distributions 

The most common form of truncation of gamma distributions, when used in 
life-testing situations, is truncation from above. This is omission of values 
exceeding a fixed number r ,  which is usually (though not always) known. If r 
is not known, and the distribution before truncation is of the general form 
(17.1), there are four parameters (a,  P, y, r) to estimate, and technical 
problems become formidable. However, it is not difficult to construct fairly 
simple (but quite likely not very accurate) formulas for estimating these 
parameters. 

Fortunately it is often possible to assume that y is zero in these situations 
[see Parr and Webster (1965) for examples], and we will restrict ourselves to 
this case. We will suppose that we have observations that can be regarded as 
observed values of independent random variables X,, X,, . . . , X,,, each hav- 
ing the probability density function 

This may be denoted as a gamma (a,  817) distribution. Estimation of the 
parameters a and /3 has been discussed by Chapman (19561, Cohen (1950, 
1950, Das (1955), Des Raj (19531, and Iyer and Singh (1963). 

The moments of distribution (17.95) are conveniently expressed in terms 
of incomplete gamma functions: 

Gross (1971) notes that this is an increasing function of both a and fi and, 
further, that is an increasing function of a for r > 0. 

The preceding results imply that 

P7 
Osp'  c-  for all a > 0, 

' - p + 1  

d + s  rS - 5 (/3 + r )  for all a > 0. (17.98) 
14 P + r + s  

Nath (1975) obtained the minimum variance unbiased estimator of the 
reliability function (R(t) = Pr[X > t ] )  for the gamma (a ,  PIT) distribution 
with integer a. In his analysis he showed that the sum of n independent 
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gamma(a, P 17) variables, Y,  = X, + . . +Xn has cdf 

for kyr < y < (ky + 1)r ;  k = 0,1, .  . . , n  - 1, (17.99) 

with 

1 r!s(r) ! n a  - 1 s(r) 

0 n a  - 1, - = C* ( Y - r r  n;:/(rj) !n;=-/( j!)rj ( r ) (=) , 

where s(r) = Cg:djrj; the multinomial summation C* is over all nonnegative 
r = ( r , ,  . . . , r, - ,) satisfying Cgldrj = r. 

The formula for the MVU estimator of R(t) appears to be extremely 
cumbersome, although Nath (1975) claims that "it is not so in practical 
application, particularly when the sample size is small." 

As 7 + m, the distribution of Y,  tends to gamma (na, P), as is to be 
expected. The MVU estimator of R(t) tends to the incomplete beta function 
ratio I,,,Ja, (n - l)a), corresponding to Basu's (1964) MVU estimator of 
R(t), with corrected factorial term. [See also Wani and Kabe (1971), and for 
exponential distributions, Pugh (19631.1 

8.2 Compound Gamma Distributions 

Starting from (17.1), compound gamma distributions can be constructed by 
assigning joint distributions to a ,  P, and y. The great majority of such 
distributions used in applied work start from (17.2) (i.e., with y = 0) and 
assign a distribution to one of a and P (usually P). 

If p-' itself be supposed to have a gamma (6, b-') distribution with 

bsX6-1 -xb e 
P@-'(x) = 

r ( 6 )  
, OIX, (17.101) 

the resulting compound distribution has probability density function 
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