
C H A P T E R  1 9  

Exponential Distributions 

1 DEFINITION 

The random variable X has an exponential (or negative exponential) dhtribu- 4 
tion if it has a probability density function of form j 

Figure 19.1 gives a graphical representation of this function, with 8 > 0. This 1 
is a special case of the gamma distribution, the subject of Chapter 17. The I 
exponential distribution has a separate chapter because of its considerable 
importance and widespread use in statistical procedures. i 

Very often it is reasonable to take 8 = 0. The special case of (19.1) so 
obtained is called the one-parameter exponential distribution. If 8 = 0 and 
cr = 1, the distribution is called the standard exponential distribution. The 
pdf is 

The mathematics associated with the exponential distribution is often of a 
simple nature, and so it is possible to obtain explicit formulas in terms of 
elementary functions, without troublesome quadratures. For this reason 
models constructed from exponential variables are sometimes used as an 
approximate representation of other models that are more appropriate for a 
particular application. 

2 GENESIS 

There are many situations in which one would expect an exponential distribu- 
tion to give a useful description of observed variation. One of the most widely 
quoted is that of events recurring "at random in time." In particular, suppose 
that the future lifetime of an individual has the same distribution, no matter 
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GENESIS 

Figure 19.1 Exponential Density Function 

how old it is at present. This can be written formally ( X  representing 
lifetime) 

P ~ [ X  s x, + x ( X  > x,] = Pr[X I x ]  for all x, > 0, x > 0. 

X must be a continuous positive random variable. If it has a probability 
density function px(x), then the conditional probability density function, 
given that X is greater than x,, is 

Since the conditional distribution of the future lifetime ( X  - x,) is the same 
as the (unconditional) distribution of X, we have, say, 

It follows that if Fx(xo) + 1, p, > 0 and Fx(x) satisfy the differential 
equation 

whence 1 - Fx(x) a ePPox. Introducing the condition lim, ,, Fx(x) = 0, we 
find that 
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that is, 

This shows that the probability density function of X is of form (19.1) with 
8 = 0, a = p,'. 

There are other situations in which exponential distributions appear to be 
the most natural. Many of these do, however, have as an essential feature the 
random recurrence (often in time) of an event. 

In applying the Monte Carlo method it is often required to transform 
random variables from a standard rectangular distribution to exponential 
random variables. An ingenious method was suggested at an early date by 
von Neumann (1951). Let {Xi; i = 0,1,. . . I  be a sequence of independent 
random variables from the standard rectangular distribution, and define a 
random variable N taking positive integer values through {Xi] by the inequal- 
ities 

We "accept" the sequence {Xi] if N is odd, otherwise we "reject" it and 
repeat the process until N turns out odd. Let T be the number of sequences 
rejected before an odd N appears (T = 0,1,. . . ) and X, be the value of the 
first variable in the accepted sequence. Then Y = T + Xo is an exponential 
random variable with the standard density e-". 

A rather more convenient method was suggested by Marsaglia (1961). Let 
N be a nonnegative random integer with the geometric distribution [Chapter 
5, Section 2, equation (5.8)] 

and let M be a positive random integer with the zero-truncated Poisson 
distribution [Chapter 4, Section 10, equation (4.7311 

Finally let (Xi; i = 1,2,. . .) be a sequence of independent random variables 
each having a standard rectangular distribution (Chapter 26). Then 

has the standard exponential distribution. 
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Sibuya (1962) gave a statistical interpretation of the procedure, recom- 
mended that the value of the parameter A be taken as 0.5 or log2, and 
extended the technique to the chi-square distribution. BBnkiivi (1964) investi- 
gated a similar technique. A table of 10,000 exponential random numbers is 
given by Barnett (1965). 

3 SOME REMARKS ON HISTORY 

Over the last 40 years the study of estimators based on samples from an 
exponential population has been closely associated with the study of order 
statistics. Lloyd (1952) described a method for obtaining the best linear 
unbiased estimators (BLUEs) of the parameters of a distribution, using order 
statistics. Epstein and Sobel (1953) presented the maximum likelihood esti- 
mator of the scale parameter a ,  of the one-parameter exponential distribu- 
tion in the case of censoring from the right. Epstein and Sobel (1954) 
extended the foregoing analysis to the two-parameter exponential distribu- 
tion. Sarhan (1954) employed the method derived by Lloyd to obtain the 
BLUEs of a and 6 for the two-parameter exponential distribution in the 
case of no censoring. Sarhan (1955) extended his results to censoring. Sarhan 
noted that in the special case of the one-parameter exponential distribution, 
his results agreed with those of Epstein and Sobel, and therefore his 
estimator of a was not only the best linear unbiased estimator but also the 
maximum likelihood estimator of a. Epstein (1960) extended his own results 
to estimators of a and 8 for the one- and two-parameter exponential 
distributions in the cases of censoring from the right and/or left. For the 
two-parameter exponential distribution his maximum likelihood estimators 
coincided with the BLUEs of Sarhan (1960), but for the one-parameter 
exponential distribution there was agreement only in the case of censoring 
from the right. Many other contributions by Epstein and Sobel are included 
in the references. 

In the light of the applicability of order statistics to the exponential 
distribution it became quite natural to attempt estimation of the parameter 
by use of the sample quasi-ranges. Rider (1959) derived the probability 
density function and the cumulants of the quasi-range of the standardized 
exponential distribution and Fukuta (1960) derived "best" linear estimators 
of a and 8 by two sample quasi-ranges. The next step would quite reasonably 
be that of determining the two order statistics that would supply the best 
linear unbiased estimator of a and 8 for the two-parameter distribution; this 
was in fact done numerically by Sarhan, Greenberg, and Ogawa (1963). They 
employed the method of Lloyd to obtain the best linear estimators of a and 
6 based on the two-order statistics Xk and X;:,, and then compared 
numerically the relative efficiencies of the estimators for various pairs 
of values (1, m). Harter (1960, using a similar approach to that of Sarhan 
and his coworkers, presented the best linear estimators of a for the one- 
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parameter distribution based on one- and two-order statistics. Harter men- 
tioned in this paper that he was not aware of any analytical process by which 
the optimum pair of order statistics Xi:, and Xk:, can be determined. 
Siddiqui (1963) presented an analytical method based on the Euler-Mac- 
laurin formula for obtaining the optimum pair of BLUE order statistics. 
Since 1963 a considerable number of additional, more refined, results have 
been obtained. Some of these results are presented in Section 7. 

4 MOMENTS AND GENERATING FUNCTIONS 

The moment generating function of a random variable X with probability 
density function (19.1) is 

- > . . 
E[etX] = (1 - ut)- 'ete (=  (1  - u t ) - l  if 0 = 0). (19.4) 

The characteristic function is (1 - iut)-lei''. 
The central moment generating function is 

The cumulant generating function is log E[etX] = t0 - log0 - ut). Hence 
the cumulants are 

Setting r = 2,3,4, we find that 

Note that if 0 = 0 and u = 1, then E[X] = 1 = Var(X). 
The first two moment ratios are 

The mean deviation is 



ORDER STATISTICS 

Note that 

Mean deviation 2 
= - -  - 0.736. 

Standard deviation e 

The median of the distribution is I9 + u log, 2. The mode of this distribution 
is at the lowest value I9 of the range of variation. 

The information generating function [(u - 1)-th frequency moment] is 
a'-"u-'. The entropy is 1 + log u. The hazard rate (u-') is constant. This is 
an important property of exponential distributions. 

5 APPLICATIONS 

As has already been mentioned in Section 1, the exponential distribution is 
applied in a very wide variety of statistical procedures. Currently among the 
most prominent applications are in the field of life-testing. The lifetime (or 
life characteristic, as it is often called) can be usefully represented by an 
exponential random variable, with (usually) a relatively simple associated 
theory. Sometimes the representation is not adequate; in such cases a 
modification of the exponential distribution [often a Weibull distribution 
(Chapter 21) is used]. 

Another application is producing usable approximate solutions to difficult 
distributional problems. An ingenious application of the exponential distribu- 
tion to approximate a sequential procedure is due to Ray (1957). He wished 
to calculate the distribution of the smallest n for which Cy= ,q2 < K,, where 
U,, U,, . . . are independent unit normal variables and K,, K,, . . . are speci- 
fied positive constants. By replacing this by the distribution of the smallest 
even n, he obtained a problem in which the sums C ~ = ' , , U , ~  are replaced by 
sums of independent exponential variables (actually X2's with two degrees of 
freedom each). 

Vardeman and Ray (1985) investigated the average sum lengths for 
CUSUM schemes when observations are exponentially distributed. 'They 
show that in this case the Page (1954) integral equation whose solution gives 
average sum lengths for one-sided CUSUM schemes can be solved without 
resorting to approximation. They provide tables of average run lengths for 
the exponential case. 

6 ORDER STATISTICS 

Let Xi I X; I - . . s XL be the order statistics obtained from a sample of 
size n from the standard exponential distribution in (19.2). Then, the joint 
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density of all n order statistics is 

By making the transformation 

we obtain from (19.8) the joint density function of Y,, Y2, . . . , Y, to be 

That is, the x's (termed normalized spacings) are independent and identically 
distributed standard exponential random variables. This result is originally 
due to Sukhatme (1937). Also from (19.91, 

From (19.11) it is clear that the exponential order statistics form an additive 
Markov chain as shown originally by RCnyi (1953). 

The additive Markov chain representation in (19.11) makes it possible to 
write down explicit expressions for the single and product moments of Xi. 
For example, we have 

= Var(X,') for 1 I i < k I n .  (19.14) 

This special structure of the variance-covariance matrix of exponential order 
statistics makes it possible to derive the best linear unbiased estimators of the 
parameters in an explicit form (see Section 7). 

Interestingly the result that the normalized spacings x's defined in (19.9) 
are i.i.d. standard exponential random variables has been generalized by 
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Viveros and Balakrishnan (1994) to the case of a Type I1 progressively 
censored sample. To be precise, let m be the number of failures observed 
before termination of a life test of n individuals and Xi r; Xi I. . - < Xk 
be the observed ordered life lengths. Let Ri designate the number of units 
removed at the time of the ith failure (Type I1 censoring), 

with 

The resulting data are referred to as a Type I1 progressively censored sam- 
ple [e.g., see Nelson (1982); Lawless (1982); Cohen and Whitten (1988); 
Balakrishnan and Cohen (1991); Cohen (199111. Defining the ith normalized 
spacing between Xi, Xi, . . . , Xk as 

Viveros and Balakrishnan (1994) have proved that q's are i.i.d. exponential 
random variables. Sukhatme's result, presented earlier, is a particular case of 
this general result corresponding to R, = R, = . . . = R, = 0. In this gen- 
eral case an additive Markov chain representation for Xi' similar to the one 
in (19.11) is possible; it can then be used in writing down explicit expressions 
for the means, variances, and covariances of Xi that are similar to those in 
(19.12)-(19.14). The special structure of the variance-covariance matrix of 
exponential order statistics observed earlier in (19.13)-(19.14) occurs in this 
general case of Type I1 progressively censored sample and enables the best 
linear unbiased estimators of the parameters to be derived in an explicit form 
(as described in Section 7c). 

Due to the close relationship between the geometric and the exponential 
distributions, there also exists a close relationship between the dependence 
structure of order statistics from the geometric distribution and those from 
the exponential distribution. Steutel and Thiemann (1989) showed some of 
these similarities. For example, by introducing a second subscript to denote 
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sample size, (19.11) can be written as 

i I;. I 

x;, c ' C xi:n-j+l, 
j = l ( n - j + l )  j=l  

where the Xi:n-j+l's are independent. Steutel and Thiemann (1989) estab- 
lished the following parallel relationship for the geometric order statistics: 

where Z;:, denotes the ith order statistic from a random sample of size n 
from a geometric (p)  distribution, the q's are independent exponential (u) 
random variables with u = l/[-log(1 - p)], [ Y ]  denotes the integer part of 
Y, and ( Y )  denotes the fractional part of Y. Further, all the random 
variables on the right-hand side of (19.17) are independent. 

Arnold and Villasefior (1989) and Arnold and Nagaraja (1991) discussed 
the Lorenz order relationships among order statistics from exponential 
samples. The Lorenz curve associated with X is 

(see Chapter 12, Section 1). Given two nonnegative random variables X and 
Y (with finite positive mean), we say X exhibits less inequality (or variability) 
than Y in the Lorenz sense, and write X <, Y, if Lx(u) 2 Ly(u) for all 
u E [0, 11; if the inequality is an equality, we write X =, Y. If Lx(u) and 
Ly(u) cross, X and Y are not comparable in the Lorenz sense. Arnold and 
Nagaraja (1991) proved that for i I j, 

Xi:, <,X;:, iff ( n  - i + l)E[X,',,] I ( m  - j + ~)E[x,!:,]. (19.19) 

As direct consequences of this result, they established for the exponential 
order statistics that 

1' Xi':n+l <LXi):n, 
2. Xi'+l:n+~ <~Xi):n, 
3. Xi)+l:n <LX,!:n iff E[Xi),,] I 1; otherwise, Xi:, and Xi)+, : n  are not 

Lorenz ordered. 

These authors have also discussed the Lorenz ordering of linear functions of 
exponential order statistics. 
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By making use of the underlying differential equation of a standard 
exponential distribution, given by p,(x) = 1 - FX(x), Joshi (1978, 1982) 
derived the following recurrence relations: 

and 

and 

These recurrence relations can be used in a simple recursive manner in order 
to compute all the single and product moments (in particular, the means, 
variances, and covariances) of all order statistics. Balakrishnan and Gupta 
(1992) extended these results and derived relations that will enable one to 
find the moments and cross-moments (of order up to 4) of order statistics. 
They then used these results to determine the mean, variance, and the 
coefficients of skewness and kurtosis of a general linear function of exponen- 
tial order statistics and approximate its distribution. Through this approach 
Balakrishnan and Gupta (1992) justify a chi-square approximation for the 
distribution of the best linear unbiased estimator of the mean lifetime based 
on doubly Type I1 censored samples (see Section 7). Interestingly the 
relations in (19.20a)-(19.20d), under certain conditions, can also be shown to 
be characterizations of the exponential distribution [Lin (1988, 198911 (see 
Section 8). Balakrishnan and Malik (1986) derived similar recurrence rela- 
tions for the single and product moments of order statistics from a linear- 
exponential distribution with increasing hazard rate. Sen and Bhattacharyya 
(1994) have discussed inferential issues relating to this distribution. 

By making use of the facts that X = -log U has a standard exponential 
distribution, when U has a uniform (0,l) distribution (see Chapter 26), and 
that -log U is a monotonic decreasing function of U, we have 
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and hence 

where x's are the normalized exponential spacings defined in (19.9). Since 
x's are i.i.d. exponential, as seen earlier, it immediately follows from (19.21) 
that 

are i.i.d. uniform (0,l) random variables. This result was derived originally by ] 
Malmquist (1950) and is now used effectively to simulate order statistics from 1 
uniform distribution without resorting to any ordering. d 

Joshi (1978, 1982) also considered order statistics from a right-truncated 
exponential population with density 

\ 0, otherwise, 

where P1 = - log(1 - P )  and 1 - P (0 < P < 1) is the proportion of trunca- 
tion on the right of the standard exponential distribution. By making use of 
the underlying differential equation given by 

and proceeding along the lines used to prove relations (19.20a)-(19.20d1, 
Joshi (1978, 1982) established the following recurrence relations: 
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n 2 2, (19.24d) 

1 
EIX; :nXf+ l :n ]  = E [ X ; ~ , ]  + - 

n - i  

l a i < j a n -  1 ; j - i 2 2 ,  (19.24f) 

and 

E[x , l , .X i : . ]  = E I X , l , n X ~ - l : , ]  + E [ X ; , , ]  

Saleh, Scott, and Junkins (1975) derived exact (but somewhat cumbersome) 
explicit expressions for the first two single moments and the product 
moments of order statistics in this right-truncated exponential case. 
Balakrishnan and Gupta (1992) extended the results of Joshi and established 
recurrence relations that will enable one to find the moments and cross- 
moments (of order up to four) of order statistics. 
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By considering the doubly truncated exponential distribution with density 

1 

io- 

e-', Q l s x s P l ,  
PX(X) = P - Q (19.25) 

otherwise, 

where Q and 1 - P (0 < Q < P < 1) are the proportiopq of truncation on 
the left and right of the standard exponential distributioq, respectively, and 
Ql = -1 og(1 - Q) and Pl = -log(l - PI, Joshi (19793 and Balakrishnan 
and Joshi (1984) derived several recurrence relations satisfied by the single 
and the product moments of order statistics. Khan, Yaqub, and Parvez (1983) 
tabulated these quantities for some value of P ,  Q, and n. Distributions of 
some systematic statistics like the sample range and quasi-range were derived 
in this case by Joshi and Balakrishnan (1984). 

7 ESTIMATION 

Before 1959 a considerable amount of work had been done on inference 
procedures for the exponential distribution with both censored and uncen- 
sored data. (See numerous references at the end of this chapter.) It was 
realized, in the 1960s and 1970s, that although the exponential distribution 
can be handled rather easily, the consequent analysis is often poorly robust 
[e.g., see Zelen and Dannemiller (19601. Nevertheless, the study of proper- 
ties of this distribution, and especially construction of estimation and testing 
procedures has continued steadily, during the last 30 years, with some 
emphasis on Bayesian analysis and order statistics methodology, and an 
explosion of results on characterizations. To keep this chapter within reason- 
able bounds, it was necessary to be very selective in our citations and 
descriptions of results. We first discuss classical estimators. 

7.1 Classical Estimation 

If XI, X,, . . . , Xn are independent random variables each having the proba- 
bility density function (19.0, then the maximum likelihood estimators of 8 
and a are 

8" = min(Xl, X,, . . . , X,), 

n (19.26) 
6 = n - l  (xi - 0) = X -  0. 

i= 1 

If 8 is known, the maximum likelihood estimator of a is (X - 8). Even with 
a known, 8" above is still the maximum likelihood estimator of 8. 
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The probability density function of 6 is 

which is of the same form as (19.1) but with u replaced by u/n. The variance 
of 6 is therefore u2/n2, and its expected value is 8 + u/n. It is interesting to 
note that the variance is proportional to n-2 and not to n-'. 

The expected value of 6 [= X - g] is a ( l  - n-'), and its variance is 

The expected value of (x - 8) is u and its variance is u2n-'. 
A function of special interest in some applications is the value of the 

probability that X exceeds a value x,; the reliability function R(x,). If 8 = 0 
so that (19.1) becomes 

then 

Inserting the maximum likelihood estimator, 6 = n-'C;=,Xi in place of a ,  
would give the estimator exp(-xon/Cr='=,Xi). This is the maximum likelihood 
estimator of the reliability R(x,). It is biased, but a minimum variance 
unbiased estimator can be obtained by using the Blackwell-Rao theorem. 

The statistic 

is an unbiased estimator of exp(-x,/u). Since C;=,Xi is a complete suffi- 
cient statistic for u [and so also for exp(-x,/~)], the required minimum 
variance unbiased estimator is 

The ratio X,/C;='=,Xi has a beta distribution with parameters 1, n - 1, and 



is independent of Cy=lXi (Chapter 17, Section 6). Hence 1 

which is the required minimum variance unbiased estimator. This formula 
was obtained by Pugh (1963). (Pugh claims this is the "best" estimator but 
does not compare its mean square error with that of competing estimators.) 

S The sampling distribution of the maximum likelihood estimator of parameter ; 
a in (19.28), based on a "time-censored" sample, was derived by Bartholomew 9 

(1963). 
Moment estimators (8c, 6 )  of (6, v) can be obtained by equating sample . 

and population values of the mean and variance. They are 

- g = x - ~  (19.31a) 

6 = sample standard deviation. (19.31b) 

Cohen and Helm (1973) discuss modified moment estimators obtained by 
replacing (19.31b) by an equation that puts the first-order statistic Xi equal 
to its expected value. This gives 

which leads to 

and 

They show that these are minimum variance unbiased estimators (and 
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a fortiori BLUES). Also 

so that ~orr(B;E, 6*)  = l/&. Further, since 6 *  is distributed as 
$(n - l)-lXGn-l), a 100(1 - a)% confidence interval for u is (in the obvious 
notation) 

2(n - 1) 2(n - 1) 
* 2 

- 1), 1 - f X2(n - I), f 

7.2 Grouped Data 

In a monograph KulldorfT (1961) discussed a general theory of estimation 
based on grouped or partially grouped samples. By grouped we mean that in 
disjoint intervals of the distribution range, only the numbers of observed 
values that have fallen in the intervals are available, and not the individual 
sample values. The distribution of the observed numbers is a multinomial 
distribution with probabilities that are functions of the parameter. If individ- 
ual observations are available in some intervals, the sample is partially 
grouped. 

Kulldorff devoted a large part of his book to the estimation of the 
exponential distribution because of its simplicity. The cases studied included 
completely or partially grouped data, 8 unknown, a unknown, both 8 and u 
unknown, a finite number of intervals, an infinite number of intervals, 
intervals of equal length, and intervals of unequal length. Here we describe 
only the maximum likelihood estimator of a when 8 is known, the intervals 
are not of equal length, and the number of intervals is finite. 

Let 0 = x, < x, < . . - < xk-, < oo be the dividing points and N,, . . . , Nk, 
(Cf=,N, = n) the numbers of observed values in the respective intervals. 
Then the maximum likelihood estimator & is the unique solution of 
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which exists if and only if Nl < n and N, < n. For large n, 3 
! 

For a given k, the dividing points that minimize the asymptotic variance i 
are 1 

X i  
k-l 

- =  C s,, 
a j = k - i  

where 

For example, 

The simplicity of mathematical analysis for the exponential distribution 
permits us to construct convenient Bayesian estimators of parameters of 
(19.1). Some initial results in this area (for censored samples) are presented 
in Varde (1969), who also compared their performance with more natural (at 
least in this case) and efficient maximum likelihood and minimum variance 
unbiased estimators. 

7.3 Estimators Using Selected Quantiles 

In life-test analysis it is often supported that lifetime can be represented by a 
random variable with probability density function 

If a number n of items are observed with lifetimes commencing simultane- 
ously, then, as each life concludes, observations of lifetime become available 
sequentially, starting with the shortest lifetime Xi of the n items, followed by 
the 2nd, 3rd.. . shortest lifetimes X;, Xi,. . . , respectively. Clearly it will be 
advantageous if useful inferences can be made at a relatively early stage, 
without waiting for completion of the longer lifetimes. This means that 
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inference must be based on observed values of the k, say, shortest lifetimes, 
or in more general terms, the first k-order statistics (see Section 6). On 
account of the practical importance of these analyses, statistical techniques 
have been worked out in considerable detail. Here we will describe only 
methods of estimation, but a considerable range of test procedures is also 
available. 

From (19.8) we find that if 

v , = x ; - x i ,  v , = x ; - x ;  ,..., v,=x,:-x;-,, 
then 

1. Xi, V,, V,, . . . , V,  are mutually independent, 
2. the distribution of Xi is exponential (19.1) with 8 = 0, u = n-', 
3. the distribution of I.;. is exponential (19.1) with 8 = 0, 

a = ( n - j +  I)-', j = 2  ,..., n. 

Since X,' = Xi + V, + . + ( j  r 21, it follows that all linear functions of 
the order statistics can be expressed as linear functions of the independent 
random variables Xi, V,, . . . , V,. This form of representation [suggested by 
Sukhatme (1937) and RCnyi (1953); see also Epstein and Sobel (1954) for a 
similar result] is very helpful in solving distribution problems associated with 
methods described in the remainder of this section. A similar kind of 
representation can be applied to gamma distributions, though the results are 
not so simple. 

It is necessary to distinguish between censoring (often refered as Type II 
censoring), in which the order statistics that will be used (e.g., the r smallest 
values) are decided in advance, and truncation (or Type I censoring) in which 
the range of values that will be used (e.g., all observations less than To) is 
decided in advance (regardless of how many observations fall within the 
specific limits). Truncation (or Type I censoring) by omission of all observa- 
tions less than a fixed value To (> 0) has the effect that observed values may 
be represented by a random variable with probability density function 

which is again of form (19.1) [with To (known) replacing 81, and so presents 
no special difficulties. However, if (as is more commonly the case) truncation 
is by omission of all values greater than To (> O), then the corresponding 
probability density function is 

, O < x < T o , u > O .  
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If m observations are obtained, they can be represented by independent 
random variables XI, X,, . . . , X,, each with distribution (19.38). The maxi- 
mum likelihood equation for an estimator &To of a is 

This equation may be solved by an iterative process. In this work the table of 
Barton, David, and Merrington (1963) is useful. 

Wright, Engelhardt, and Bain (1978) and Piegorsch (1987) studied infer- 
ence on 8 and a for distribution (19.1) under Type I censoring. Wright, 
Engelhardt, and Bain (1978) presented procedures based on the conditional 
distribution of "failure" times, given the number D of failures occurring 
before the censoring time 7. They distinguished between testing with and 
without replacement. In the first case Xi and D are sufficient statistics, and 
in the second D and S = Cf=,X,! are sufficient. 

Assuming testing without replacement, they utilized the facts that given 
D = d, the conditional distribution of [(X - Xi)/(X - @ ) I d  is uniform on 
(0, I), and that for fixed 8, D is sufficient and complete for a ,  while for fixed 
a, X; is sufficient and complete for 8. 

Assuming testing without replacement leads to a rather complicated 
conditional density for Xi, given D and S. However, Wright, Engelhardt, and 
Bain (1978) provide a table of exact percentage points of Xi for small and 
moderate D and an approximation for large D. [In the case where 8 = 0, 
Bartholomew (1963) developed confidence intervals based on the maximum 
likelihood estimator 

where T is the termination time, (provided that D > 011. 
Piegorsch (1987) uses somewhat simpler methods, based on the approxi- 

mate distribution of the likelihood ratio (LR) test statistic and some other 
approximations reviewed in Lawless (1982, Sec. 3.5.2). He discusses small 
sample performance of these procedures, based on Monte Carlo evaluation. 
He introduces the sets 

A = (i: min(t,, 7) = ti, i = 1,. . . , n )  

and 
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and proposes estimators 

and 

and observed lifetimes ti and fixed censoring time at 7. 

The LR statistic for testing a = a, is 

The asymptotic distribution of this statistic is X 2  with one degree of freedom 
if 8 = 8,. To construct approximate 100(1 - a)% confidence limits for 8, 
Piegorsch (1987) suggests solving the equations 

This equation always has two solutions, one for 8/a < 1 and the other for 
8 /u  > 1. These solutions L, and Uu are then used to construct an asymp- 
totic 100(1 - a)% confidence interval on a of the form 

A similar approach yields asymptotic 100(1 - a)% confidence limits for 8. 
For smaller sample sizes (n s lo), the conditional inference on a given by 
Wright, Engelhardt, and Bain (1978) may be preferred. However, Piegorsch's 
method for 8 performs well even for n = 5 with an F-based approximation 
providing errors closer to nominal than the LR-based values particularly at 
a = 0.05. 

Joint regions for ( a ,  8) can be constructed using Bonferroni's approach, 
with a rectangular region corresponding to the cross-product of univariate 
1 - q confidence intervals on 8 and a (the elliptic procedure using the 
asymptotic normality of the MLEs breaks down, yielding a hyperbolic rather 
than an elliptic region). Ranking and subset selection procedures for expo- 
nential population with Type I (and Type 11) censored data are discussed in 
Berger and Kim (1985). 

We will now restrict ourselves to Type I1 censored samples only. We will 
give details only for the case where 8 = 0 [so that the probability density 
function is as in (19.28)J and where censoring results in omission of the 
largest n - k values (i.e., observation of the k smallest values, where k is 
specified prior to obtaining the observations). The joint probability density 
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function of the k (> 1) smallest observations in a random sample of size n is 

0 I x ,  5 x 2  5 . . a  I x,.  (19.44) 1 

The maximum likelihood estimator of u is 

This statistic is distributed as (+u/k) X (X2 with 2k degrees of freedom). 
The expected value of YL is therefore a ,  and its variance is u2/k. The limits 

2 kYL 2 kYL 
2 and 7 

X2k,l- ;a  X2k, +a 

define a confidence interval for cr with confidence coefficient 100(1 - a)%. 
A wide variety of estimators of u and 8 based on order statistics is 

available. Many references at the end of this chapter contain discussions of 
such estimators. Among the problems discussed are estimation 

1. by linear functions of a limited number (usually not more than about 
five) of order statistics-this includes both the choice of coefficients in 
the linear function, and of the order statistics to be used; 

2. when only the k largest values are observed; 
3. when predetermined numbers of both the smallest and largest values 

are omitted; 
4. conversely, when only these values are known-that is, the middle 

group of observations is omitted. 

In all cases formulas have been obtained appropriate to estimation of a ,  
knowing 8; of 0, knowing u ;  and of both 8 and a, neither being known. We 
now discuss some of the more useful of these formulas. 

The variance-covariance matrix of the order statistics Xi 5 Xi  5 . - . - < 
XA has elements 

r 

Var(X:) = u 2  ( n  - j + I)-' = Cov(X:, Xi) ,  r < s .  (19.46) 
j =  1 
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Also 

From these relationships it is straightforward to construct best linear unbi- 
ased estimators based on k-selected order statistics Xi1,  X i2 , .  . . , Xik with 

n,  < n ,  < < n,.  

It will be convenient to use the notation 

with no = 0, and W ~ , / W ~ ~ ,  w , , ,+ , /w, , ,+ ,  each defined to be zero. 
If 8 is known, the best linear unbiased estimator of a is 

The variance of 6 is U ~ ( C ~ = ~ W , ~ ~ W ~ ' ) - ' .  Some special cases are 

1. n, = i ,  k = n (complete sample): 

2. ni = rl + i ,  k = n - r1 - r, (censoring r1  smallest and r ,  largest 
values): 
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(1963)l. Epstein (1962) has noted that the efficiency of the unbiased 
estimator based on X: - 8 is never less than 96% if r/n I 3, or 90% 
if r/n I 4 .  

5. k = 2 (estimation from two order statistics XL,, XA2). The variance of 
C? is a minimum when n, is the nearest integer to 0.6386(n + t )  and n, 
is the nearest integer to 0.9266(n + 3) [Siddiqui (1963)l. 

For small samples Sarhan and Greenberg (1958) give the following optimal 
choices: 

Sample Size (n) ( 2-4 5-7 8-11 12-15 16-18 19-21 

If 8 is not known, the optimal choices are different. Sarhan and Greenberg 
(1958) give the following optimal choices for n, and n, (with k = 2): 

Sample Size (n) 1 2-6 7-10 11-15 16-20 2 1 

The best (in fact only) linear unbiased estimator of a, using only Xi, and 
XL2 is 

- 1 

( 2 - 1 )  C ( n  - j )  (19.53) 

and its variance is 
I 

me ~p~~~~~ vahe of n I is always 1, whatever the values of n and n2. 
Kulldorff (1962) considered the problem of choosing n,, n,, . . . , n, to 

minimize Var(6) or v ar(h for k sred. He tabulated the opf~mal n ; 8 a d  
CQePF\dlents ~ Q X  small values 0% k and n. Eathex, Sathan and Gxeenbexg 
(1958) treated the asymptotic (la~ge n) case (for 0 known) giving the optimal 
percentiles n,/n, n2/n,. . . , n,/n, for k fixed. These tables are reproduced 
by Ogawa (1962). Saleh and Ali (1966) and Saleh (1966) proved the unique- 
ness of the optimal selection and extended the results to censored cases. 

The table of Zabransky, Sibuya, and Saleh (1966) is most exhaustive and 
covers uncensored and censored samples, finite and asymptotic cases for a 
wide range. Sibuya (1969) gave the algorithms for computing their tables, and 
unified previous results in simpler form. 
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Epstein (1962) gave a number of useful results. He pointed out that 
X: - 8 is approximately distributed as $(u/r) x (x2  with 21. degrees of 
freedom). Approximate confidence intervals for u can be constructed on this 
basis. Epstein also gave formulas for the minimum variance unbiased estima- 
tors of 8 and u for the two-parameter distribution (19.1), based on 
Xi, Xi , .  . . , XL. These are 

a *  is distributed as i u ( k  - I)-' X [ x 2  with 2(k - 1) degrees of freedoml. 
100(1 - a)% confidence limits for u are 

2(k - l ) u *  2(k - l )u*  
2 and 

x2(k- l ) , l - f  X2(k- 1). f 

100(1 - a)% confidence limits for 8 are 

Xi - F2,xk-l) ,1-n~*n-1 and Xi (19.56) 

(using the notation of Chapter 27, Section 1). 
If only XLI + ,, . . . , XL-k, are to be used, the minimum variance unbiased 

estimators are 

U* is distributed as iu (n  - k1 - k, - I)-' X [ x 2  with 2(n - kl  - k2 - 1) 
degrees of freedoml and 

The minimum variance unbiased estimator (MVUE) of the reliability func- 
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tion based on Xi,. . . , XL is 

[T, , , is defined in (19.45)]. 
The mean square error of d ( t )  is 

where 

1 u r - l  -u  
y(u; r )  = - 

r ( r )  
e ,  

[Basu (1964)l. Based on past data, one may have a prior (guessed) value of a ,  
a,, say, that can be utilized for statistical inference. The so-called shrinkage 
estimators arising in this situation perform better than the MVUE if the value 
a, is close to a. A preliminary test can be conducted to check the closeness 
of a, to a. Chiou (1987) proposes incorporating a preliminary test on a ,  
using an estimator of type 

e x - )  
i fHo:u=uoisnotre jected,  

R P T ( ~ )  = (19.60) 

(@I)  otherwise. 

Since 2Tk,,/a has a X 2  distribution with 2k degrees of freedom, H, is not 
rejected if 

where C, (C,) are the ; lower (upper) percentage points of xik.  Thus 

(m otherwise. 
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Chiou (1987) provides optimal critical values for the preliminary test and 
their corresponding level of significance, based on the minimax regret crite- 
rion. 

Alternatively, Chiou (1992) proposes the "shrinkage estimator" 

(m otherwise, 

where o is a shrinkage coefficient suitably specified. Chiou provides a table 
of optimum values of shrinkage coefficient w for t/uo = 0.25(0.25)2.0 and 
k = 4(2)10 as well as critical values C, and C, for the preliminary test. 

Zacks and Even (1966) compared the performance of MVUE and the 
maximum likelihood estimator in terms of mean square error for small 
samples. The MLE is more efficient than MVUE over the interval 0.5 < 
t/u < 3.5. Over the "effective intervals where uo/u is in the vicinity of 1 
[(0.7, 1.4) for r = 4 and t/uo = 2 as an example], Chiou's (1992) shrinkage 
estimators are more efficient, but none of the estimators for R(t) investigated 
so far is uniformly better than others over the whole possible range of u/uo." 

Cohen and Whitten (1988) discuss estimation of parameters in the case of 
progressively censored samples. Censoring is progressively carried out in k 
stages at times < 7, < . - . < rj < . . < rk. At jth stage of censoring, 
Cj sample specimens, selected randomly from the survivors at time rj, are 
removed. In addition we have n full-term observations and our sample 
consists of (X,, X,, . . . , Xn) plus k partial term observations {Cjrjj ( j  2 
1,. . . , k). Thus N = n + r, where r = C:cj (Cj 2 1 corresponds to censor- 
ing and Cj = 0 to noncensoring), and the sum total (ST) term of all N 
observations in the sample is 

The modified maximum likelihood estimators (MMLEs) of u and 8 in the 
case of progressive censoring, obtained by solving 

aIn L --  - 0 and E[Xi] =Xi 
au 

are given by 
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Explicitly 

(For the uncensored case Cj = 0, n = N, and ST = d?.) 
Estimation of parameters from general location-scale families (of which 

the two-parameter exponential distribution is a member) under progressive 
censored sampling was studied by Viveros and Balakrishnan (1994). They 
follow the classical arguments for conditional inference for location and scale 
parameters as expounded, for example, in Lawless (1982). 

A modified hybrid censoring model was investigated by Zacks (1986). Let 
r0 be the fixed time at which the (Type I) censoring occurs. Let Xi:, denote 
the kth-order statistic of a sample of n i.i.d. random variables from the 
one-parameter exponential distribution (19.28). 

Let X,* = rnin(XL:,,r,). The recorded random variable is the time- 
censored kth-order statistic. Let X&, . . . , Xt*, denote m i.i.d. random 
variables distributed as X,*. Zacks (1986) shows the existence and uniqueness 
of a MLE of u based on the sample X:,, = (X,*,,. . . , X&). 

He also investigates the properties of the moment estimator (ME) that is 
the root of the equation in u 

where B(j; n; p )  is the cdf of the binomial distribution with parameters 
(n, P ) .  

Numerical comparisons show that in the case of MLE "censoring has a 
dramatic effect on the possibility of estimating u efficiently. The efficiency of 
the MLE drops to almost zero when u is in the neighborhood of r,." The 
asymptotic relative efficiency of ME relative to MLE is an increasing function 
of r,/u = q. When q = 1, the ARE of the ME is about 62%, whereas at 
q = 3 it is 99%. On the other hand, under censoring, the MLE is consider- 
ably more efficient than the ME when 77 is close to 1. 

7.4 Estimation of Quantiles 

Robertson (1977), in an important paper, develops estimation procedures for 
quantiles of the exponential distribution (19.28) such that mean square errors 
in the predicted distribution function is minimized. For complete random 
samples of size n, a particular quantile, represented as Ku, has estimators of 
the form K*T. The optimal estimator of K u  (with squared error loss) is in 
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fact K,X, where 

Its mean square error is 

For a linear estimator Ey='=,aiXi, the mean square error is 

where u = 1 for convenience, yielding minimizing values 

a .  = 
[expIK/(n + 1)) - 11 

for all i 
2 - exp(K(n + 1)) 

For n < (K/log2) - 1, this estimator will break down, and the optimum 
choice will be KO = w. [Indeed one cannot reasonably expect to estimate the 
99% point (K  = 4.605) using a sample of size 5 [( < (K/log 2) - I).] Compar- 
ison of K,X with KZ (the natural K )  and K 2 X  [chosen to make exp( -K,X) 
an unbiased estimator of em(-Kc+)] has been carried out by Robertson 
(1977). For small n or large K (extreme percentiles) there are considerable 
differences among the three estimators. 

To estimate K u  by means of a single order statistic the estimator is of the 
form K3X:, where the optimal choice for large n turns out to be r = a n  with 
a = 0.79681213 (the positive root of equation ePza = 1 - a )  and 

For large n, K3X: has efficiency approximately 65% [= 4a( l  - a)%] rela- 
tive to K,X,  the optimal estimator based on the complete sample. 

7.5 Bayesian Estimation 

One-Parameter Exponential Distributions 
In Bayesian estimation prior distributions are often assigned to the hazard 
rate ( A  = a-'1 rather than to the expected value (a). We therefore use the 
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If the prior on A is uniform over (0, M), then the posterior density ofA, 
given a random sample X,, X,, . . . , Xn is 

For large M this is approximately a gamma (n + 1, {Cy=lXi}-') distribution 
with pdf 

If this posterior pdf is used as a new prior, and a random sample 
Y,, Y,, . . . , Y, obtained, the new posterior is of the same form as (19.71), with 
n increased to (n + m) and Cy=,Xi increased by Cim_,?. Thus the gamma 
prior is a "natural conjugate" prior for A [see Barlow and Proschan (1979)l. 

Waller et al. (1977) develop an interesting and potentially fruitful ap- 
proach to determination of the parameters of a gamma (a,  p) prior on A in 
the pdf (19.28)", based on values of 

decided upon by a researcher. Extensive tables and graphs are provided 
giving values of a and /3 for selected values A, and p, for which 

Pr[A < A,] = p,. (19.72) 

By overlapping transparencies of graphs for (A,, p,) and (A,, p,), appro- 
priate values of a and p can be determined. If (19.72) is satisfied then A,/p 
is constant for given a. For small values of a ,  Waller et al. (1977) recom- 
mended the approximation A - ppl/". 

For situations where only the first k "failures" are observed, with k 
specified in advance (Type I1 censoring), the MLE of A is 

with T, = C~=,X,' + (n - k)Xi. With a gamma (a, b-') prior on A, we 
arrive at a posterior gamma (a + k,(b + T,)-') distribution of A. Similar 
results are obtained for truncated sampling (Type I censoring), and also for 
inverse binomial sampling (when a failed or truncated unit is replaced). 
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If A - '  (= u )  is ascribed a "uniform7' distribution, the posterior distribu- 
tion for u would have pdf 

which is called the inverted gamma distribution. 
Since an inverted gamma prior on u also results in an inverted gamma 

posterior distribution for a ,  it is a natural conjugate in this situation. This is 
not surprising since, if A has a gamma distribution, u (= A-') has an 
inverted gamma distribution. 

Bayesian estimation of the reliability function 

R(t )  = Pr[X > t ]  = exp - - ( 1) 
has been studied by Sinha and Guttman (1976). Assuming a so-called vague 
Jeffreys's prior density (proportional to u-') on u ,  and using only the first k 
order statistics, they show that the posterior density of R(t) is 

where S, = Tk/t7 which can be regarded as the "cumulative life per unit 
time" up to time t .  The posterior density for u in this situation is 

See also Shoukri (1983) for further discussions. 
VillCn-Altamizano (1990) used a gamma ( p ,  a-') prior for A (= a-'), 

obtaining the posterior density of R(1) = exp(-a-') given the results (y., Z j )  
( j  = 1, . . . , n) from a randomly censored sample of size n with lifetimes {Xi) 
and censoring times {YJ, where 
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and 

in the form 

where W = C;= and I = C;=, Ij. 
The posterior expected value is 

This is the Bayesian estimator (optimal for quadratic loss). The mode of the 
posterior distribution is 

l o  otherwise. 

fio-Parameter Exponential Distributions 
For the two-parameter distribution 

Sinha and Guttman (1976) ascribed a joint prior to 8 and u that is 
proportional to (a > O), and obtained the following results for Type I 
censoring using the first k order statistics in a random sample of size n. The 
posterior expected values (Bayes estimators) of 8 and u are 
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where 

EXPONENTIAL DISTRIBUTIONS 

For the reliability function 

R ( t )  = exp - - ( 
we have 

This estimator was found to be reasonably robust with respect to a.  The 
posterior distribution of R ( t )  is quite complicated [see also Pierce (1973)l. 
Trader (1985) used a truncated normal prior. 

7.6 Miscelianeous 

Maximum probability estimation (MPE) is a method of estimation proposed 
by Weiss and Wolfowitz (1967) [see also Weiss (19891. The essential idea is 
to seek an interval of predetermined length 1, say, that maximizes the integral 
of the likelihood function over the interval. In the case of the two-parameter 
exponential distribution (19.1), the analysis for estimation of 8  takes an 
especially simple form. Given a random sample of size n with values 
X I , .  . . , X,, the likelihood function is 

exp(- z y = ~ ( ~ i  - e ,  
(+ > 0, 8  I min Xi = X ; ,  

L ( X ( 8 ,  a )  = u 

9 > x;. 
( 19.83) 
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Since L = 0 for 8 > X; and L is an increasing function of 8 for 8 I X;, 
the MPE interval of length 1 is 

(whatever the value of a) .  Blyth (1982) followed this analysis by considering 
choice of attractive values for 1, if (Xi - f l )  is used as a point estimator of 8. 
He found that 

1. for minimum mean square error, f l  = n-'a, 
2. for minimum absolute error, fl = n-'a log 2. 

Introducing a quadratic loss function, Arnold (1970), and independently 
Zidek (1973) and Brewster (1974), derived optimal estimators of a for cases 
where 8 is unknown. The MLE of a ,  & = X - Xi, is also the best affine 
equivariant estimator (BAEE) of a. However, the estimator is inadmissible 
for a wide class of loss functions satisfying conditions of differentiability and 
bowl-shapedness. Modified estimators, aimed at reducing this drawback, 
were suggested by the above authors. 

Estimators of the ratio (6 = a2/al) of scale parameters of two distribu- 
tions T,, a2 of form (19.1) with values (5, ( j  = 1,2) for the parameters 
(u, O), respectively, were investigated by Mad1 and Tsui (1990). Suppose that 
there are two independent ordered random sample values 

Xi, I Xi2 5 . . - - < Xin1 from T, 

and 

X;l I X;, s . . - - < X.&,Z from w2. 

With loss function W(S, a*) whence 6* is an estimator of 6, the statistics 

are sufficient for the four parameters a,, a,, el, and 8,. Assuming that 
W(6, S*) = W(S*/S), the BAEE estimator is 
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where co minimizes /,"t " I - ~  ~ ( c t X 1  + nlt/n,)-(nl+"z-2) dt and c, minimizes 
/ F t n l - l ~ ( ~ t X 1  + n,t/n,)-("1+"2-') dt provided that 

1. W is differentiable, 
2. W( y ) is bowl-shaped [i.e., W( y ) decreases with y for y I yo, increases 

for y > yo], attaining its minimum value at y = 1, 
3. if a, = a2 = 1, then 

x1 - x;, [I ( x2 - ) ] is finite for all c > I. E W ' c -  

A "smooth" version of S* can be obtained by replacing the multiplier of 
(XI - xil)/(X2 - Xi,) by a more refined function. The resulting estimator 
has 

Effects of Outliers 
The effects of outliers on the estimation of a in the one-parameter case 
(19.28) has received considerable attention in the literature since the early 
1970s. Among the first studies were those of Kale and Sinha (1971) and Joshi 
(1972). They initially studied situations where n - 1 independent random 
variables each had distribution (19.28), while one further random variable 
(the "outlier") has a pdf of the same form, but with a replaced by a/a. 

For situations where the identity of the outlier is not known (and the 
probability that X, is the outlier is n-' for j = 1,. . . , n), Kale and Sinha 
(1971) suggest consideration of the class of estimators (for u): 

where Tk is defined as in (19.73). Joshi (1972) tabulates optimum values for 
n 

k, minimizing the mean square error. If k = n [with 6" = Xi/(n + I)], we 
have i = l  

MSE(C?~/~) = (n  + 1)-'  + 2(a- '  - ~ ) ~ ( n  + I)-', (19.88) 

where a/a is the mean of the outlier. 
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Generally, the optimum k has to be found numerically. Joshi (1972) found 
that for 0.55 I a 5 1 the optimal value of k is n. Later [Joshi (198811 he 
found that the optimal value of k is fairly stable over wide ranges of values of 
a and suggested, as a rule of thumb, 

Take k = n for 0.5 5 a < 1.0 
Take k = n - 1 for 0.25 5 a < 0.5 
Take k = n - 2 for 0.05 I a 5 0.25. 

Chikkagoudar and Kunchur (1980) suggest the estimator 

Comparison between 6, and V shows that neither estimator dominates the 
other (in terms of mean square error loss). [T, (for optimal k) is superior for 
values of a near 0 or 1.1 Balakrishnan and Barnett (1994) have recently 
proposed some generalized estimators of this form and discussed their 
properties. 

From (1991) has studied robust estimators that are general linear func- 
tions of order statistics, aiming to obtain optimal (or near-optimal) values for 
the coefficients ci in C~,lciX;, for various values of a and n. Optimal choice 
calls for rather complicated calculations, so From advocates use of simplified 
estimators with very nearly optimal mean square error, which is always less 
than those of 6, and V. This estimator uses 

with d l  > d2 and appropriate integer m. Tables are provided giving optimal 
values of (dl, d,, rn) for n = 2(1)15(5)30(10)50 and a = 0.05, 0.15. 

If the value of a is known, Joshi (1972) suggests using the estimator 

He also suggests estimating a (if it is unknown) by an iterative procedure, 
solving the equation 

to estimate a ,  and then using optimal k to get a new estimator 6,, of a, and 
so on; see also Jevanand and Nair (1993). 

Through a systematic study of order statistics from independent and 
non-identically distributed exponential random variables, Balakrishnan (1994) 
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has established several recurrence relations for the single and the product 
moments of order statistics. These results will enable the computation of all 
the single and product moments of order statistics arising from a sample 
containing p outliers (recursively in p by starting with p = 0 or the i.i.d. 
case). Through this recursive computational process, Balakrishnan (1994) has 
extended the work of Joshi (1972) to the p-outlier case and determined the 
optimal trimmed and Winsorized estimators. The robustness properties of 
various linear estimators, including the Chikkagoudar-Kunchur estimator in 
(19.89), have also been examined by Balakrishnan (1994). 

Veale (1981) has investigated cases where the identity of the outlier is 
known. This of course leads to much simpler analysis. 

Returning to uncontaminated (no-outliers) data, the estimation of a in 
the standard (one-parameter) case (19.28), subject to the condition that a is 
no less than a,, was studied by Gupta and Basu (1980). [Related cases 
u < a,, or a in (a,, a ,)  can be analyzed similarly by using appropriate 
transformations.] 

Natural estimators of a (given u > a,) are 

6 = max(3, a,) (the MLE) (19.92) 

Numerical studies show that the mean square error (MSE) of a *  is less than 
that of 6 for small n, when u,/u is small. Indeed, even for n = 30, a *  has 
the smaller MSE if u,/u I 0.3. 

Estimation of the probability P = Pr[Y < XI, where X and Y are inde- 
pendent exponential variables, has received prominent attention in the 
literature. The common interpretations of this probability is a measure of the 
reliability or performance of an item of strength Y subject to a stress X, or 
probability that one component fails prior to another component of some 
device. 

Tong (1974, 1975) obtained the uniformly minimum variance unbiased 
estimator (UMVUE) of P when X and Y are independent one-parameter 
exponential (19.28) variables. Kelley, Kelley, and Schucany (1976) derived the 
variance of the UMVUE of P. Beg (1980) obtained the UMVUE of P when 
X and Y have two-parameter exponential (19.1) distributions with unequal 
scale and location parameters. Gupta and Gupta (1988) obtained the MLE, 
the UMVUE, and a Bayesian estimator of P when the location parameters 
are unequal but there is a common scale parameter. Bartoszewicz (1977) 
tackled the problem in the exponential case for different types of censoring. 
Reiser, Faraggi, and Guttman (1993) discuss the choice of sample sizes for 
the experiments dealing with inference on Pr[Y < X) in an acceptance 
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sampling theory framework with exponential variables. Most recently Bai and 
Hong (1992) revisited the problem, obtaining the U M W E  of P with 
unequal sample sizes when X and Y are independent two-parameter expo- 
nential random variables with an unknown common location parameter. 
Kocherlakota and Balakrishnan (1986) have discussed one-sided as well as 
two-sided acceptance sampling plans based on Type-I1 censored samples. 

If X and Y are independent one-parameter exponential (19.28) random 
variables with hazard rates (u-') A and p,  respectively, then 

Given two independent random samples X,, . . . , X,,, and Y,, . . . , Yn, the 
MVUE of P is 

[Tong (1974)l where a(b) = a(a - 1) . . - ( a  - b + I ) ,  atbl = a(a + 1 )  - . 
(a + b - 1).  

If p is known so that there is no need to sample for Y values, the MVUE 
is 

m - l  
P** = ( -  l ) ' (m - l ) " ' ( m p ~ ) - '  

If there is Type I1 censoring, with only the first g order statistics Xi,. . . , Xi 
of X and the first h order statistics Y,', . . . , Y,' of Y being available, the 
UMVUE of P is 

where G = Cig,,lXj' + ( m  - g)XL, H = C;=ly + (n - h)YL. For g = m and 
h = n, (19.97) reduces to (19.95). If each failed item is replaced immediately 
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by a new item having the same lifetime distribution, the UMVUE of P is 
obtained from (19.97) by replacing G by mXi and H by nY,'. 

The maximum likelihood estimator of P (given complete sample values) is 

If rn = n the MLE is unbiased ( E [ P ^ ]  = p(A + p)-I), and hence it is also the 
UMVUE of P, as noted by Chious and Cohen (1984). Expressions for the 
UMVUE of P for the general case of two-parameter exponential random 
variables are complex, even in the case of common (unknown) location 
parameter. 

However, the MLE of P is given by 

where T = min(X,Y) = min(X;, Y;) is the maximum likelihood estimator of 
the common location parameter. As m, n -, m, with rn/n -, y, asymptoti- 
cally 

where u2 = p2(1 - P),Iy(l - y)) and the ? and the UMVUE are asymptot- 
ically equivalent in this case. 

In view of (19.94), the problem of choice of sample sizes for estimating P 
with specified accuracy is equivalent to the solution to the sample size 
problem provided by Reiser, Faraggi, and Guttman (1993) for the ratio of 
two exponential scale parameters. Given PI, a ,  P2, p with 0 < P2 < P, < 0, 
0 < a < 1, 0 < p < 1, it is required to find an acceptance rule of the form 
P > PC, with rn and n such that (1) if P = PI, the probability of acceptance is 
1 - a, and (2) if P = P2, the probability of acceptance is p. In this case rn 
and n must satisfy 

where F,,,,,;, is the a percentage point of the F,,,,, distribution. 
When a random sample of size n has been censored by omission of the 

greatest n - k observed values, it may be of interest to estimate (predict) the 
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value of a specific one of the omitted values X;, say ( r  > k). Lawless (1971) 
used the pivotal variable 

x; - xi 
G, = [T,  as defined in (19.73)] (19.102) 

Tk 

to obtain the upper 100(1 - a)% prediction limit (UPL), 

where Pr[Gl s g,, , -,I = 1 - a. The cdf of GI  is 

Lingappaiah (1973) suggested using 

in place of GI, noting that these would lead to simpler calculations and that 
XA contains "all the prior information" about X:. However, Kaminsky (1977) 
pointed out that this is only true if a is known. He also noted that the 
probability that the UPL based on GI exceeds that based on G, is close to 
(but below) 0.5 in a number of representative cases. Furthermore he showed 
that the asymptotic probability (as n + 03) that the length of predictor 
interval based on G, exceeds that based on G, is zero. 

For the two-parameter distribution (19.1) similar procedures can be fol- 
lowed, noting that the variables Xi' - Xi are distributed as order statistics 
from a random sample of size n - 1 from the distribution (19.28). Likeg 
(1974) extends Lawless's (1971) treatment to this case, using the statistic 

with TL = Cik,,~; + (n - k)Xi - (n - 1)Xf. Tables of quantiles of G; were 
' constructed by Likes and NedtSlka (1973). Further results on these lines were 
/ obtained by Lawless (19771, and later incorporated in his important textbook, 
i 
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