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Beta Distributions 

1 DEFINITION 

The family of beta distributions is composed of all distributions with proba- 
bility density functions of form: 

with p > 0, q > 0. It is denoted beta ( p ,  q). This will be recognized as a 
Pearson Type I or I1 distribution (see Chapter 12, Section 4.1). If q = 1, the 
distribution is sometimes called a power-function distribution. 

If we make the transformation 

Y - a  x=- 
b - a '  

we obtain the probability density function 

This is the standard form of the beta distribution with parameters p, 4. It is 
the form that will be used in most of this chapter. The standard power-func- 
tion density is 

Harter (1978) introduced the family of symmetric ( p  = q)  standardized beta 

2 10 
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variables with the density function 

, . r V ~ P )  1 ,- .r. n - l  

Of course E[ XI = 0 and var( X )  = 1 .  For p = 1.5(0.5)4.0 he provides explicit 
formulas for the cdfs. The simplest, for p = 2, is 

The probability density function of a symmetric beta distribution with 
parameter p, mean w ,  and standard deviation u is 

The probability integral of the distribution (25.2) up to x is the incomplete 
beta function ratio, and it is denoted by I J p ,  q )  so that 

The word "ratio," which distinguishes (25.6) from the incomplete beta func- 1 

B x ( p , q )  = / x t p - ' ( l  - qq-' d t ,  (25.7a) 
0 

is often omitted. A description of the properties of I J p ,  q )  is contained in 
Chapter 1 (Section A51 and in Chapter 3 (Section 6) .  

Dutka (1981) provides a detailed account of the history of B J p ,  q )  and 
I J p ,  q ) ,  tracing it back to 1676, in a letter from Isaac Newton to Henry 
Oldenberg. The formula given is the special case of 

where ,F,(.) denotes the Gaussian hypergeometric function defined in 
- .  
Eq.  (1.104) of Chapter 1. 



212 BETA DISTRIBUTIONS 

2 GENESIS AND RANDOM NUMBER GENERATION 

in "normal theory" the beta distribution arises naturally as the distribution 
of v2 = x:/(x: + x;), where x:, X; are independent random variables, 
and X; is distributed as X 2  with v, degrees of freedom ( j  = 1,2) (see 
Chapter 18). The distribution of v2 is then a standard beta distribution, as 

I in (25.21, with p = t v , ,  q = ?v2. Generally Y = W,/(Wl + W2) has a stan- 
dard beta distribution with parameters pl  and p2 if q. has the gamma 
density (see Chapter 17) with parameters ( p,, p) ( j  = 1,2) (for any p > 0). 

Notice that v2 and (X: + x:) are mutually independent. An extension of 
this result is that if X:, X i , .  - . , X: are mutually independent with X: 
distributed as X 2  with v, degrees of freedom ( j  = 1,2,.  . . , k )  (see Chapter 
181, then 

are mutually independent random variables, each with a beta distribution, 
the values of p ,  q for c2 being 4 C!,,vi, $v,+ , ,  respectively. Under these 
conditions the product of any consecutive set of c2 ' s  also has a beta 
distribution [see Jambunathan (1954) and Section 81. This property also holds 
when the v's are any positive numbers (not necessarily integers). Kotlarski 
(1962) has investigated general conditions under which products of indepen- 
dent variables have a beta distribution. 

The special standard beta distribution with p = q = 4 [known as the 
arc-sine distribution because Pr[X 5 x ]  = (2/rr)sin-'& for 0 I x 5 11 arises 
in an interesting way in the theory of "random walks." Suppose that a 
particle moves along the real line by steps of unit length, starting from zero, 
it being equally likely that a step will be to the left (decreasing) or right 
(increasing). Let the random variable T2, denote the number of times in the 
first 2n steps for which the point is in the interval 0 to 2n inclusive at the 
conclusion of a step. Then 

The ratio T2,/(2n) can be regarded as the fraction of time spent on the 
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positive part of the real line. As n tends to infinity, the limiting distribution 
of T2,/(2n) is the arc-sine distribution: 

Standard beta distributions with p + q = 1, but p # 4, are sometimes called 
generalized arc-sine distributions. For more details on the arc-sine distribu- 
tion, see Section 7. 

A beta distribution can also be obtained as the limiting distribution of 
eigenvalues in a sequence of random matrices. Suppose that A, to be a 
symmetric n x n matrix whose elements a,, (i s j )  are independent random 
variables, all a,,'s with i f j having a common distribution, and all a,,'s 
another common distribution, both distributions being symmetrical about 
zero with variance u 2  and with all absolute moments finite. Under these 
conditions Wigner (1958) has shown that the proportion of eigenvalues of the 
"normalized" matrix (~u&)- 'A, ,  which are less than x, tends to the limit 

2 r - I  / ; , m d t  

as n + oo. This is of form (25.1) with a = - 1, b = 1, p = q = 3/2. Arnold 
(1967) has shown that this result holds under much weaker conditions on the 
distributions of the a,,'s. 

A class of distributions that includes the beta (i, 4) and beta (2,2) 
distributions, can be generated by the following procedure: Starting with the 
interval (0, I), observe the value of a random variable XI distributed uni- 
formly over (0, l )  [i.e., as beta (1,111. Then choose one of the two subintervals 
(0, X,), (X,,  I), with probabilities p, 1 - p of choosing the longer or shorter 
one, respectively. Denoting the chosen interval by ( L , ,  U,), then observe the 
value of a random variable X,, uniformly distributed over (L , ,  U,), and 
choose as (L,, U2), the longer or shorter of the intervals (L , ,  X,), (X,, U,) 
with probabilities p ,  1 - p,  respectively. Continue in this way, choosing 
( Ln+  ,, Un + ,) as the longer or shorter of (L,, X,,+ , ), ( X, + ,, U,) with probabil- 
ities p, 1 - p,  respectively. It is easy to see that as n + a, the interval length 
(U, - L,) tends to zero with probability one, and there is a limiting value Y,, 
say, to which L, and U, tend. 

The distribution of Y,,, is beta (4,;) [Chen, Lin, and Zame (1981)], and 
the distribution of Y, is beta (2,2) [Chen, Goodman, and Zame (198411. It is 
natural to conjecture that Y, has an approximate (but not exact) beta 
distribution for values of p other than 4 or 1. Johnson and Kotz (1994) show 
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that 
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and that 

If Yp had a beta ( a ,  a) distribution, the value of a giving the correct value 
for var(Y,) would be 2(7 - 6p)-I. This would result in a "nominal" value 

Table 25.1 compares values of p2 from (25.10) (actual) and (25.11) (nominal), 
for selected values of p. 

The agreement between actual and nominal values supports the conjec- 
ture that beta [2(7 - 6p)-', 2(7 - 6p)-'I would be a good approximation to 
the distribution of Y,. O'Connor, Hook, and O'Connor (1985) came to the 
same conclusion on the basis of simulations. 

Another procedure leading to limiting beta distributions has been de- 
scribed by Kennedy (1988). Values of k independent variables Z,,,. . a ,  Z,, 
each uniformly distributed over (L,, U,) are observed. The interval 
(L ,+ I ,Un+I )  is then chosen as(L,,max(Z,,,~~~,Z,,)), 

with probabilities p ,  q, r ,  respectively ( p  + q -t r = 1). Kennedy (1988) 
showed that if the initial interval is (0, I), the limit to which both L, and U, 
converge (with probability 1) is distributed as beta ( k ( p  + r), k(q + r)) over 
(0, 1). [Of course, if the initial interval is (A,  B), the limit distribution is beta 
( k ( p  + r) ,  k(q + r)) over (A,  B).] There is an alternative proof, based on 
moment calculations, in Johnson and Kotz (1993). 

Yet another way in which a beta distribution arises is as the distribution of 
an ordered variable from a rectangular distribution (Chapter 26). If 
Y,, Y,; . a ,  Y ,  are independent random variables each having the standard 

Table 25.1 Actual and Nominal Values of fl, 

P 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Actual P,  1.287 1.315 1.348 1.388 1.438 1.500 1.580 1.687 1.831 2.019 2.143 
Nominal p, 1.320 1.345 1.374 1.408 1.449 1.500 1.563 1.645 1.754 1.909 2.143 
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rectangular distribution so that 

p y , ( y ) = l ,  O l ~ l l ,  

and the corresponding order statistics are Y,' r Y; r . . I Ynt, the sth-order 
statistic Y: has the beta distribution 

pv:(y) = [ B ( s , n  - s + l ) ] ' y s l ( l  - y)n-S ,  0 4 y 5 1. (25.13) 

Fox (1963) suggested that this result may be used to generate beta-distributed 
random variables from standard rectangularly distributed variables. By this 
method only integer values can be obtained for n and n - s. A method 
applicable for fractional values of n and n - s was constructed by Johnk 
(1964). He showed that if X and Y are independent standard rectangular 
variables, then the conditional distribution of XI/", given that XI/" + Y'/' 
I 1 ,  is a standard beta distribution with parameters n, r + 1, and the 
conditional distribution of Y'/' is beta with parameters n + 1 and r.  

This process involves the calculation of XI/" and Y ' I r ,  which may be 
awkward. If n and/or r are large, then a large number of pairs of values 
(X, Y) is likely to be needed to ensure XI/" + Y I / '  s 1, as pointed out by 
Pekh and Marchenko (1992). [In fact ~4 XI/" + Y ' I r  r 11 < 1 - Pr[X '1" > 
; ]P~[Y'/ '  > f ]  < 2-" + 2-'. Hence, if min(n, r )  2 11, Pr[X1/" + Y'/'  I 11 
is less than 0.001.1 Binkiivi (1964) has suggested a method whereby these 
calculations may be avoided if n and r are both rational. This consists of 
selecting integers a , ,  a,; . ., a,, b, ,  b,,. . ., b, such that 

M N 

n = C a;', r = C b;'. 
I =  I ] = I  

Then using the fact that if XI, X,, . ., X,, Y,, . . , Y, are independ- 
ent standard rectangular variables, max(Xf1, X,"2;.., X p )  and 
max(~p1, Y , ~ z , .  . ., Y$") are distributed as XI'", Y I/', respectively. 

If n (or r )  is not a rational fraction, it may be approximated as closely as 
desired by such a fraction. Bgnkijvi has investigated the effects of such 
approximation on the desired beta variates. The GR method is based on the 
property that X = Y/(Y + Z )  has a beta ( p ,  q )  distribution if Y and Z are 
independent gamma variables with shape parameters p and q, respectively 
(see the beginning of this section). 

Generation of beta random variables based on acceptance/rejection algo- 
rithms was studied by Ahrens and Dieter (1974) and Atkinson and Pearce 
(19761, among others. The latter authors recommend the Forsythe (1972) 
method, which was originally applied to generate random normal deviates. 
Chen (1978) proposed a modified algorithm BA: ( p ,  q > 0). 
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Initialization: Set a = p + q. If min(p, q)  I 1, set p = max(p-I, q-  '1; 
otherwise set /3 = ,/{(a - 2)/(2pq - a)). Set Y = P + P-I. 

1. Generate uniform (0 , l )  random numbers U,, U,, and set V = 

j3 log(U,/(l - U,)), W = peV. 
2. If a log{a/(q + W)) + yV - 1.3862944 < IO~(U?U,), go to 1. 
3. Deliver X = W/(q + W). 

This algorithm is reasonably fast for values of p and q down to about 0.5. 
More complicated versions (BBXBC), also described by Chen (1978), cover 
all a, b > 0 and offer quicker variate generation speed. Here is 

Algorithm BB (mid p,, qo) > 1) 
Initialization: Set p = min(p,, q,), q = max(p,, qo), a = P + q, p = - 

2)/(2pq - all; y = p + p-I. 

1. Generate uniform (0,l)  random numbers U,, U,, and set V = 

p log{U,/(l - U,)), W = peV, Z = u ~ U , ,  R = y V  - 1.3862944, S = p  
+ R- W .  

2. If S + 2.609438 2 5Z, go to 5. 
3. Set T = log Z. If S 2 T, go to 5. 
4. If R + a log(a/(q + W)) < T, go to 1. 
5. If p = p,, deliver X = W/(q + W); otherwise deliver X = q/(q + W). 

Schmeiser and Shalaby (1980) developed three exact methods applicable 
for min(p, q)  > 1 (corresponding to Chen's BB algorithm). One of the 
methods is a minor modification of the Ahrens and Dieter (1974) algorithm: 
BNM. All the methods use the property that points of inflexion of the beta 
density are at 

if these values lie between zero and one, and are real. 
A detailed comparison of the various methods, carried out by Schmeiser 

and Shalaby (1980), shows that BB is the fastest for heavily skewed distribu- 
tions but yields to BNM for heavy-tailed symmetric distributions. No algo- 
rithm does better than BB for the following values of the parameters: 

p = 1.01 q = 1.01,1.50,2.00,5.00,10.00,100.00 

p = 1.50 q = 1.50,2.00,5.00,10.00,100.00 

p = 2.00 q = 2.00 

p = 5.00 q = 5.00 

p = 10.00 q = 10.00 

p = 100.00 q = 100.00 
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Devroye (1986) contains summaries of methods of generating random vari- 
ables with beta distributions. 

3 PROPERTIES 

If X has the standard beta distribution (25.2), its r th moment about zero is 

B ( p + r , q )  T ( p + r ) T ( p + q )  
P', = 

- - 
B( P, q )  T ( P ) ~ ( P  + 4 + r )  

- - (if r is an integer), 
( P + q)lrl 

where y[ r l  = y( y + 1) . . - ( y + r - 1) is the ascending factorial. In particular 

P 
E [ X ]  = - 

p + q '  

var(X) = p q ( p  + q ) - 2 ( ~  + q + I ) - ' ,  

f f3(X) = d r n ~  
= 2(q -p) , /p- '  + q - '  + (pq)- I  ( p  + q + 2)- ' ,  

f fq(X) = P 2 ( X )  = 3 ( p  + q  + 1 ) ( 2 ( ~ + q ) ~ + p q ( p  + q -  6)) 

x l p q ( ~ + q + 2 ) ( ~ + q + 3 ) 1 - ~ ~  

E[X-I]  = ( p  + q - l ) ( p  - 1)-I,  

"[(l - x ) - ' ]  = ( p  + q - l ) ( q  - 1)-I .  

Pham-Gia (1994) has recently established some simple bounds for var(X). 
Specifically, he has shown that var(X) < 1/4, and if the density of X is 
unimodal (i.e., p > 1 and q > 1) then var(X) < 1/12; further, if the density 
of X is U-shaped (i.e., p < 1 and q < I), then he has proved that var( X )  > 

Writing A = ( p  + q)- ' and 8 = p ( p  + q)-', we have the following recur- 
rence relation among the central moments of the standard beta distribution: 
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The moment-generating function can be expressed as a confluent hypergeo- 
metric function [Eq. (1.1211, Chapter 11: 

and, of course, the characteristic function is M(p;  p + q; it). 
The moment-generating function of (-log XI, where X is a standard 

beta, is 

B(P  - t , q )  
M ( t )  = ~ [ e x p ( -  t log x) ]  = (25.17)' 

B ( P , ~ )  ' 

and the corresponding cumulant-generating function is 

The cumulants are 

if q is an integer. In the general case 

,,.r = ( - ~ ) ~ [ + ( r -  I ) (  p)  - + ( r -  1 )  ( P  + dl1 (25.17)" 

where JI"-')(x) = (dr/dxr)log T(x) is the ( r  + 1)-gamma function (see 
Chapter 1, Section A2). 

The mean deviation of X is 

If p = q, the expression reduces to 

The authors thank Dr. T. Pham-Gia for pointing out an error in the 
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expression for S , ( X )  which appeared in the first edition of this volume. [See 
also Pham-Gia and Turkkan (1992).] 

For p and q large, using Stirling's approximation to the gamma function, 
the mean deviation is approximately 

and 

Mean deviation 7 1 1 

= , , F ( l  + 
+ q)- I  - -p-I - -q-l).  

Standard deviation 12 12 

The mean deviation about the median (m) is 

If p > 1 and q > 1, then px(x)  -, 0 as x -+ 0 or x -+ 1; if 0 < p < 1, 
px(x) -, oc as x -+ 0; and if 0 < q < 1, px(x) -+ as x -+ 1. If p = 1 
(q = 11, px(x) tends to a finite nonzero value as x -t 0 (1). 

If p > 1 and q > 1, the density function has a single mode at x = ( p  - 
l ) / (p  + q - 2). If p < 1 and q < 1, there is an antimode (minimum value) 
of px(x) at this value of x. Such distributions are called U-shaped beta (or 
Type I or 11) distributions. If ( p  - 1Xq - 1) is not positive, the probability 
density function does not have a mode or an antimode for 0 < x < 1. Such 
distributions are called J-shaped or reverse J-shaped beta (or Type I) distribu- 
tions. [Peleg and Normand (1986) advocate using the reparametrization 
am = p  - 1, m = q - 1 so that the mode is at a / (a  + 1) and does not 
depend on m. Although they call this a modijied beta distribution, it is in 
fact just a regular beta distribution that is differently parametrized.] If p = q, 
the distribution is symmetrical about x = t. 

For all positive values of p and q, there are points of inflexion at 

provided these values are real and lie between 0 and 1. Note that as for all 
Pearson curves, the points of inflexion are equidistant from the modes. 

The expected value p/(p + q )  depends on the ratio p/q. If this ratio is 
I kept constant, but p and q are both increased, the variance decreases, and 

the (standardized) distribution tends to the unit normal distribution. Some of 
the properties of beta distributions described in this section are shown in 
Figures 25.la, 6. Note that if the values of p and q are interchanged, the 
distribution is "reflected" about x = i. 
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Figure 2S.la Beta density functions 

The Lorenz curve [see Chapter 12, Eq. (12.1611 has coordinates 

and the Gini index [Chapter 12, Eq. (12.911 is 
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X 

Figure 25.lb Beta density functions 

4 ESTIMATION 

Discussion of parameter estimation for beta distributions goes back to 
Pearson's classical paper of 1895 where the method of moments was intro- 
duced. Direct algebraic solution of the ML equations cannot be obtained for 
beta distributions. Koshal (1933, 1935) tackled the ML estimation of four- 
parameter beta distributions, approximating the actual ML parameter esti- 
mates by an interactive method using estimates derived by the method of 
moments as initial values. 

Estimation of all four parameters in distribution (25.1) can be effected by 
equating sample and population values of the first four moments. Calculation 
of a, b, p, and q from the mean and central moments p2, p,, p4 uses the 
following formulas [Elderton and Johnson (196911. Putting 

r = 
6(P2 - Pl - 1) 

6 + 3/31 - 2/32 ' 
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[where mode (Y) = a + ( b  - a x p  - l ) / (p  + 9 - 211 and 

If the values of a and b are known, then only the first and second 
moments need to be used, giving 

whence 

-- P dl - 0  

b - a  p + q '  

Thus 

The existence, consistency, and asymptotic normality and efficiency of a 
root of the likelihood equations are usually proved under conditions similar 
to those given by CramCr (1946) or Kulldorff (1957), which, among other 
things, allow Taylor expansion of the derivative of the log-likelihood function 
in a fixed neighborhood of the true parameter value. 

When it is necessary to estimate at least one of the end points (a  or b) of 
the four-parameter beta distribution, no such fixed neighborhood of Taylor 
expansion validity exists. But if the true shape parameters ( p  and q )  are 
large enough (> 2, regular case), Whitby (1971) has shown that the condi- 
tions can be weakened to allow Taylor expansion in a sequence of shrinking 
neighborhoods, and the usual asymptotic results, with n ' I 2  normalization, 
can be proved. 
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If a and b are known and Y,, Y,,. . ., Yn are independent random variables 
each having distribution (25.11, the maximum likelihood equations for estima- 
tors B, 'j of p,  q, respectively are 

b - 7  
1(8) - $(B + 4) = n- '  ,=, 5 log(-), b - a  (25.30b) 

where $(.) is the digamma function [Eq. (1.371, Chapter 11. The Cramtr and 
Kulldorfl'conditions cover this case and Eqs. (25.30a) and (25.30b) have to be 
solved by trial and error. If 5 and 'j are not too small, the approximation 

may be used. Then approximate values of (B - &I/($ + 'j - $1 and ('j 
I - ?)/(B + 4 - $1 can be obtained from (25.30a) and (25.30b), whence 

follow, as first approximations to p and q, 

p + 
1 - JIY=~((Y, - a) / (b  - a))"" - I l ~ = ~ ( ( b  - q ) / ( b  - a))"" 

1 T ( l  - I l y =  l ( ( y  - a) / (b  - a))'") 
'j c 

I /n 
1 - IIY=~((Y, - a) / (b  - a) )  - IIj'-l((b - q ) / ( b  - 

Starting from these values, solutions of (25.30a) and (25.30b) can be obtained 
by an iterative process. Gnanadesikan, Pinkham, and Hughes (1967) give - 

exact numerical solutions for a few cases. 
The asymptotic covariance matrix of 6 6  and 6'j (as n -, a) is 
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Introducing approximations for I,$'(-), we have for large values of p and q, 

Fielitz and Myers (1975, 1976) and Romesburg (1976), in brief communica- 
tions, discuss the comparative advantages and disadvantages of the method of 
moments versus the maximum likelihood method for estimating parameters 
p and q. The difficulties involved in the maximum likelihood method are 
related to employing efficient search procedures to maximize the likelihood 
function. The Newton-Raphson method is extremely sensitive to the initial 
values of 6 and q', and there is no guarantee that convergence will be 
achieved. Fielitz and Myers (1976) point out that for the sample problem 
considered by Gnanadesikan, Pinkham, and Hughes (19671, the method of 
moments yield more accurate estimates of p and q than does the method of 
maximum likelihood, possibly due to bias introduced by the computational 
method used in determining the ML estimators. 

Beckman and Tietjen (1978) have shown that the equations (25.30a) and 
(25.30b) can be reduced to a single equation for $ alone: 

i $ (4)  - $ { [ $ - l [ l ~ g ~ I  - log G ,  + $(4))] + 4) - log G2 = 0, (25.34a) i 
I 

where 

n y - a  
G I = ~ ( - )  , = ,  b - a  

Having solved (25.34a) for 4, the estimator, 6, of p is calculated from 

b = $- ' [ logGI - log G, + $ ( d ) ] -  (25.34b) 

Lau and Lau (1991) provide a detailed investigation of methods of calculating 
good initial estimators p,, q, of p and q, respectively. 

For G I  + G, = G, I 0.95 they recommend 

log pe = -3.929 + 10.523G2 - 3.0266; + 1.757 e x p ( G , m )  (25.35a) 
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log q, = - 3.895 + 1 . 2 2 2 m  - 6.90566: 

+ 39.057G:G: + 1.5318 exp(G,). 

But for 0.95 I GT s 0.999 they suggest 

log p, = 110706.79 + 3 . 0 8 4 2 m  + 110934.01 log GT 

+ 6.3908 exp(6 ,6 f )  - 233851 .3GT + 45300.7 exp(6,) (25.35~) 

log q, = 113753.4 - 2.16: + 113979.9410g 6, + 2.154GlG: 

- 240149.96, + 46500.7 exp(G,). 

They also study the sampling distribution of the ML estimators $ and 4 
and provide a table of the sample values of percentage bias d = 100 X (rn - 
p ) / ~ ,  where rn = Cp,/K [computed for K = 1000 values of n, p,  q (n = 

30,60,100, p(= q )  = 2,6,10,20, and 4011, skewness K - ' c ( ~ ,  - rnI3/s3 = a ,  
and kurtosis b, = K-'C(P, - where S2 = U p ,  - rnI2/K. 

For p = q = 10 representative values are 

The same authors also provide a procedure for estimating a confidence 
interval for p,, using Bowman and Shenton's (1979a, 1979b) method for 
calculating fractiles of distributions belonging to Pearson's system. 

If a and b are unknown, and maximum likelihood estimators of a,  b, p, 
and q are required, the procedure based on (25.31a) and (25.31b) can be 
repeated using a succession of trial values of a and b, until the pair (a, b), 
for which the maximized likelihood (given a and b) is as great as possible, is 

Carnahan (1989) investigated in detail maximum likelihood estimation for 
four-parameter beta distributions. He adds to (25.31a) and (25.31b) the 
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a 

additional ML equations 

and 

(Note that these are essentially "method of moments" expressions, relating 
the sample values of the harmonic means E[(Y - a)- ']- ' ,  E[(b - Y)-']-' 
to the corresponding theoretical values; see Section 2.) Unfortunately, the 
likelihood function for the distribution is unbounded and has a global 
maximum that is infinite, so values of a "near" to Y,', and of b "near" to Y,' 
must be excluded. There is also a possibility of local maxima, which may not 
be well defined for small sample sizes and which plague various numerical 
schemes for maximizing likelihood. The ML estimators are asymptotically 
normal and unbiased with variances asymptotically equal to the CramCr-Rao 
lower bounds provided that min(p, q )  > 2. However, a numerical study by 
Carnahan indicates that only for very large sample sizes (n 2 500) does the 
bias become small and the CramCr-Rao bound become a good approximation 
to the variance. The author recommends employing the least and greatest 
order statistics to improve the estimates of the end points. 

The information matrix, from which the asymptotic variances and covari- 
ances of ML estimates can be obtained, (in the regular case of p, q > 2) is 

I q ( p + q - l )  ( P + q - l )  4 1 -- 
( p  - 2 ) ( b  - a ) *  ( b  - a)' ( P  - l ) ( b  - a )  b - a  

I (I 1 - 
p -  a  b - a  

The diagonal elements of I- ' are the asymptotic variances of the parameter 
estimates. Explicit inversion has not been attempted. Carnahan (1989) pro- 
vides numerical results. 

AbouRizk, Halpin, and Wilson (1993) [see also AbouRizk, Halpin, and 
Wilson (1991)], using their program "Beta Fit," compare several methods for 
estimating the parameters of four-parameter beta distributions as in (25.1) 
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(which they term "generalized beta distributions"). Among these were the 
following: 

1. Moment methods. Equating first four sample and population moments; 
next taking a = Y,' and b = Y,' and using only the first two moments 
[e.g., as suggested by Riggs (198911. 

2. "Feasibility moment matching" method. Minimizing the (unweighted) 
sum of squares of differences between sample and population means, 
variances, skewness (6 and fi) and kurtosis (b, and P,), subject to 
a < Y,' and b > Y,', and possibly other restrictions (e.g., a > 0, b > 0). 

3. Maximium likelihood method. Maximizing with arbitrary values of a and 
b [as described formally in (25.3011; any variation of a and b is not 
considered. 

4. " Regression-based " methods [see Swain, Venkataraman, and Wilson 
(1988)l. Using order statistics and the relationships [see Chapter 12, Eq. 

j (n  - j + 1) 
var(Fy(Y1)) = 

( n  + l),(n + 2) ' 

! 
i 

, 
Two variants of a least-squares method are used in minimizing 

, Cy,I~,{Fy(Y,') - j/(n + I)), with respect to a, b, p, and q. 
I 

In each case minimization is subject to the restrictions a < Y,', b > Y,' 
(a > 0, b > O ) ,  as in the third method mentioned above. 

Dishon and Weiss (1980) provide small sample comparisons of maximum 
likelihood and moment estimators for standard beta distributions (25.2) 
(a = 0 and b = 1): The maximum likelihood estimators B and 6,  which in 
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this case are solutions of the equations, 

and 

1 
*(fi + 4 + 2) - *(G + 1)  = - C log 

n 

are compared with the moment estimators 

and 

where 3, and P2 are estimators of the first and second moments, respec- 
tively. 

The results are summarized in Table 25.2. The authors generated a 
number of beta variables with known values of p and q and calculated, for 
different values of sample size n with 100 replications, fi, 4, j ,  and 4 by 
means of the equations given above. (Both estimators tend to produce errors 
of the same sign.) They defined 

(with an analogous definition for R,), where B, is the ML estimator of p and 
j, is the moment estimator of p in the jth replication. [The authors also 
develop efficient procedures for computing $(z) using the expansion 

where y = 0.57722.. . is Euler's constant, as defined in Chapter 1, 
Eq. (1.191, and the Euler-Maclaurin summation formula.] The data in the 
table show that when n is low, the ML estimator is usually more accurate 
than the moment estimator (with notable exception when p = q).  



Table 25.2 Comparison of estimates obtained from ML and moment estimates 
for a univariate beta distribution. Each row is for 100 replications 

Parameter Sample 
Values Size Na 

P 9 n P 9 R ,  R, 
I I - - - - 
2 2 25 58 56 0.935 0.888 

50 58 64 0.91 1 0.799 
100 53 57 0.805 0.847 

I - - 
2 1 25 64 61 0.793 0.802 

50 70 57 0.765 0.953 
100 62 56 0.646 0.829 

1 1 25 42 44 1.020 1.020 
50 48 5 1 1.004 0.977 

100 5 1 50 0.962 0.975 
I - - 
2 5 25 75 66 0.663 0.778 

50 66 63 0.564 0.706 
100 6 1 59 0.728 0.758 

5 1 25 57 56 0.984 0.984 
50 57 59 0.932 0.9 12 

100 55 5 1 0.961 0.940 
5 5 25 44 46 1.007 1 .OOO 

50 4 1 42 1.017 1.021 
100 58 63 0.980 0.970 

10 5 25 54 58 1 .000 0.996 
50 57 58 0.996 0.989 

100 51 59 0.984 0.981 
I 

-1 100 25 64 67 0.806 0.852 
50 70 67 0.777 0.840 

100 76 68 0.693 0.801 
1 100 25 56 6 1 0.915 0.889 

50 70 70 0.837 0.833 
100 62 64 0.914 0.896 

50 100 25 53 54 0.996 0.996 
L 

50 55 56 0.992 0.993 

i 100 50 50 1 .OOO 1 .OOO 
100 100 25 57 55 0.999 0.999 

50 43 47 1 .OOO 1 .OOO 
100 57 57 1 .ooo 1 .ooo 

"N = number of cases in which the MLE is closer to the true value of p , q ,  than the 
moment estimator. 
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rnin (p,q) 

Figure 25.2 Comparison of the variances associated with MM and ML estimators 

As Figure 25.2 from Kottes and Lau (1978) indicates, when p and q are 
small or their difference is large, the (asymptotic) method of moments variance 
exceeds the (asymptotic) maximum likelihood variance by at least 25%. These 
are the situations when the need to fit beta distributions is the greatest. 
Fortunately, in many cases a and 6, or at least one of these parameters, can 
be assigned known values. 

If only the r smallest values Xi ,  X i ;  . -, X: are available, the maximum 
likelihood equations are 

and 

[Gnanadesikan, Pinkham, and Hughes (1967)l. 
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Fang and Yuan (1990) apply the sequential algorithm for optimization by 
number theoretic methods (SNTO) proposed by Fang and Wang (1989) to 
obtain ML estimators of parameters of standard beta distributions. The 
method is superior to the Newton-Raphson method. It does not require 
unimodality or existence of derivatives (only continuity of the likelihood) and 
is not sensitive to the initial values. For the data provided by Gnanadesikan, 
Pinkham, and Hughes (1967), this method yields more accurate values than 
those of moment estimators or Gnanadesikan, Pinkham, and Hughes's (1967) 
estimators. 

If one of the values p and q is known, the equations are much simpler to 
solve. In particular, for the standard power-function distribution ( q  = l), the 
maximum likelihood estimator of p is 

and we have 

A moment estimator of p in this case is 

for which 

Note that (vara)/(varb) = p ( p  + 2Hp + I ) - ~ .  The asymptotic relative ef- 
ficiency of 6 increases with p;  it is as high as 75% for p = 1, tends to 100% 
as p -+ w, but tends to zero as p + 0. There is further discussion of 
power-function distributions in Chapter 20, Section 8. 

Interestingly Guenther (1967) has shown that for the special case of the 
standard power-function distribution, with the pdf 

the minimum variance unbiased estimator of p is -(n - lXC;,, log Xi]-'. 
Its variance is p2(n - 2)-', while the CramCr-Rao lower bound (Chapter 1, 
Section B15) is p2n-I.  

In operations research applications (especially in connection with PERT) 
it is often assumed that the standard deviation must be one-sixth of the 



range of variation (!). Thus, for a standard beta (p,  q )  distribution (range 0 to 
1). it is assumed that 

while far the more general distribution (25.1), 

a ( X )  = i ( b  - a ) .  (25.46) 

This assumption is used in fitting a beta distribution on the basis of "least 
possible" (a*), "greatest possible" (b*), and "most likely" (m*) values as 
estimated from engineers' experience of a process. These are used as 
estimates of a ,  b and the modal value 

respectively [Hillier and Lieberman (1980)l. 
Values of estimates p*, q*  of p ,  q, respectively, can be obtained from the 

simultaneous equations 

p*q* 1 
= -  

36 
(cf. (25.46)) (25.48a) 

(P*  + 4*12(p* + q* + 1) 

and 

p* - 1 m* - a* - - 
p* + q* - 2 b* - a* 

. (cf. (25.47)) (25.48b) 

It would be, perhaps, more natural to use an estimated expected value, x, 
say, and equate that to the population value, leading to 

in place of (25.48b). In fact it appears to be customary to use an equation like 
(25.48~) but with X replaced by an estimate of the expected value 

1 4(m* - a*)  1 

a* + ;( b* - a *  
(b* - a * )  = a *  + -(4m* + b* - 5a*), 

6 
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leading to 

From (25.48a), (25.48~1, or (25.48d1, ( P* + q*) can be expressed in terms 
of p*, a*, and b*. Inserting this expression for (p*  + q*) in (25.48a), we 
obtain an equation in p*. For example, using (28.48c), 

whence (25.48a) becomes 

X - a* X -  a* 

that is, 

X -  a* X - a* X - a* 
P* = - b* - a* ( 3 )  (1  - ) - 1 )  (25.49) 

Using (28.48d) would also lead to a simple explicit value for p*, but (28.48b) 
would lead to a cubic equation for p*. 

Farnum and Stanton (1987) carried out a critical investigation of the 
accuracy of the assumption that for a standard beta ( p ,  q )  variable 

Expected value = ;{4(mode) + 11, 

[presumably when (25.48a) is satisfied]. They found the approximation is 
correct to within 0.02 when the mode is between 0.13 and 0.87, and they 
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suggest using improved approximations 

2 
for mode < 0.13, (25.51a) 

2 + (mode) - ' 
and 

l ( 3  - 2(mode)) - ' for mode > 0.87. (25.51b) 
2 

Moitra (1990) suggested that some allowance should be made for "skew- 
ness" (which he measures by E[(X - E[x])~], rather than the shape factor 
fi, which would be ~&E[(x - E [ X J ) ~ ]  if a ( X )  = 1/6). ,Moitra noted 
that the "traditional" assumptions can be expressed as 

and 

a ( X )  = c - ' ( b  - a ) ,  (25.52b) 

with k = 4, c = 6. He found that c = 6 is not "optimal for values of k other 
than 4 or 5, and k = 4 is not optimal for values of c other than 6." 

Moitra made the following recommendations: "If the skewness is judged 
or known to be high, p would be between 2 and 3, and since we are 
estimating subjective distributions, we can set p = 2.5." But "if the skewness 
is judged to be moderate, then we can see from the graphs that p is very 
likely to be between 3 and 4, and so we can similarly set p = 3.5. Finally, if 
the skewness is considered to be only a little, we set p = 4.5." He also 
provided the "best" combinations of values for k and c, which are given in 
Table 25.3, and an analysis appropriate to triangular distributions (see 
Chapter 26, Section 9) for which 

E [ X ]  = + ( a  + b + m ) .  (25.53) 

Table 25.3 Best combinations of k and c ,  

k 

c 1 2 3 4 5 6 

3 Best 
4 Best Good 
5 Good Best 
6 Good Best 
7 Best 
8 Best 
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