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Finally, use the skewness and the standard error of the skewness to ind a z-score:
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Use the z-score to examine the sample’s approximation to a normal distribution. This 

value must fall between −1.96 and +1.96 to pass the normality assumption for 

α = 0.05. Since this z-score value does not fall within that range, the sample has 

failed our normality assumption for skewness. Therefore, either the sample must be 

modiied and rechecked or you must use a nonparametric statistical test.

2.4.3 Examining Skewness and Kurtosis for Normality  
Using SPSS

We will analyze the examples earlier using SPSS.

2.4.3.1 Deine Your Variables First, click the “Variable View” tab at the 

bottom of your screen. Then, type the name of your variable(s) in the “Name” 

column. As shown in Figure 2.7, we have named our variable “Wk1_Qz.”

FIGURE 2.7

2.4.3.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen and type your data under the variable names. As shown in Figure 2.8, we 

have typed the values for the “Wk1_Qz” sample.

2.4.3.3 Analyze Your Data As shown in Figure 2.9, use the pull-down menus 

to choose “Analyze,” “Descriptive Statistics,” and “Descriptives . . .”

Choose the variable(s) that you want to examine. Then, click the button in the 

middle to move the variable to the “Variable(s)” box, as shown in Figure 2.10. Next, 

click the “Options . . .” button to open the “Descriptives: Options” window shown 

in Figure 2.11. In the “Distribution” section, check the boxes next to “Kurtosis” and 

“Skewness.” Then, click “Continue.”

Finally, once you have returned to the “Descriptives” window, as shown in 

Figure 2.12, click “OK” to perform the analysis.



FIGURE 2.8

FIGURE 2.9

FIGURE 2.10
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FIGURE 2.11

FIGURE 2.12
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2.4.3.4 Interpret the Results from the SPSS Output Window The SPSS 

Output 2.1 provides the kurtosis and the skewness, along with their associated 

standard errors. In our example, the skewness is −1.018 and its standard error is 

0.501. The kurtosis is 1.153 and its standard error is 0.972.

SPSS OUTPUT 2.1

At this stage, we need to manually compute the z-scores for the skewness and 

kurtosis as we did in the previous examples. First, compute the z-score for kurtosis:
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Next, we compute the z-score for skewness:
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Both of these values must fall between −1.96 and +1.96 to pass the normality 

assumption for α = 0.05. The z-score for kurtosis falls within the desired range, but 

the z-score for skewness does not. Using α = 0.05, the sample has passed the nor-

mality assumption for kurtosis, yet failed the normality assumption for skewness. 

Therefore, either the sample must be modiied and rechecked or you must use a 

nonparametric statistical test.

2.5 COMPUTING THE KOLMOGOROV–SMIRNOV 
ONE-SAMPLE TEST

The Kolmogorov–Smirnov one-sample test is a procedure to examine the agreement 

between two sets of values. For our purposes, the two sets of values compared are 

an observed frequency distribution based on a randomly collected sample and an 

empirical frequency distribution based on the sample’s population. Furthermore, the 

observed sample is examined for normality when the empirical frequency distribu-

tion is based on a normal distribution.

The Kolmogorov–Smirnov one-sample test compares two cumulative fre-

quency distributions. A cumulative frequency distribution is useful for inding the 

number of observations above or below a particular value in a data sample. It is 

calculated by taking a given frequency and adding all the preceding frequencies  
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in the list. In other words, it is like making a running total of the frequencies in a 

distribution. Creating cumulative frequency distributions of the observed and empiri-

cal frequency distributions allow us to ind the point at which these two distributions 

show the largest divergence. Then, the test uses the largest divergence to identify a 

two-tailed probability estimate p to determine if the samples are statistically similar 

or different.

To perform the Kolmogorov–Smirnov one-sample test, we begin by determin-

ing the relative empirical frequency distribution f̂xi  based on the observed sample. 

This relative empirical frequency distribution will approximate a normal distribution 

since we are examining our observed values for sample normality. First, calculate 

the observed frequency distribution’s midpoint M and standard deviation s. The 

midpoint and standard deviation are found using Formula 2.11 and Formula 2.12:

 M x x= + ÷( )max min 2  (2.11)

where xmax is the largest value in the sample and xmin is the smallest value in the 

sample, and

 s

f x
f x

n

n

i i

i i

=
−
( )

−

∑ ∑
( )2

2

1
 (2.12)

where xi is a given value in the observed sample, fi is the frequency of a given value 

in the observed sample, and n is the number of values in the observed sample.

Next, use the midpoint and standard deviation to calculate the z-scores (see 

Formula 2.13) for the sample values xi,

 z
x M

s

i=
−

 (2.13)

Use those z-scores and Table B.1 in Appendix B to determine the probability associ-

ated with each sample value, p̂xi. These p-values are the relative frequencies of the 

empirical frequency distribution f̂r .

Now, we ind the relative values of the observed frequency distribution fr. Use 

Formula 2.14:

 f
f

n
r

i=  (2.14)

where fi is the frequency of a given value in the observed sample and n is the number 

of values in the observed sample.

Since the Kolmogorov–Smirnov test uses cumulative frequency distributions, 

both the relative empirical frequency distribution and relative observed frequency 

distribution must be converted into cumulative frequency distributions F̂xi and Sxi, 

respectively. Use Formula 2.15 and Formula 2.16 to ind the absolute value diver-

gence ɶD and D between the cumulative frequency distributions:

 ɶD F Sx xi i
= −ˆ  (2.15)

 D F Sx xi i
= −

−
ˆ

1
 (2.16)
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Use the largest divergence with Formula 2.17 to calculate the Kolmogorov–Smirnov 

test statistic Z:

 Z n D D= ( )max , ɶ  (2.17)

Then, use the Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula 

(see Formula 2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and 

Formula 2.23) to ind the two-tailed probability estimate p:

 if then0 0 27 1≤ < =Z p. ,  (2.18)

 if then0 27 1 1
2 506628 9 25. ,
.

( )≤ < = − + +Z p
Z

Q Q Q  (2.19)

where

 Q e Z= − −
1 233701 2.  (2.20)

 if then1 3 1 2 4 9 16≤ < = − + −Z p Q Q Q Q. , ( )  (2.21)

where

 Q e Z= −2 2
 (2.22)

 if thenZ p≥ =3 1 0. ,  (2.23)

A p-value that exceeds the level of risk associated with the null hypothesis indicates 

that the observed sample approximates the empirical sample. Since our empirical 

distributions approximated a normal distribution, we can state that our observed 

sample is suficiently normal for parametric statistics. Conversely, a p-value that is 

smaller than the level of risk indicates an observed sample that is not suficiently 

normal for parametric statistics. The nonparametric statistical tests in this book are 

useful if a sample lacks normality.

2.5.1 Sample Kolmogorov–Smirnov One-Sample Test

A department store has decided to evaluate customer satisfaction. As part of a pilot 

study, the store provides customers with a survey to rate employee friendliness. The 

survey uses a scale of 1–10 and its developer indicates that the scores should conform 

to a normal distribution. Use the Kolmogorov–Smirnov one-sample test to decide if 

the sample of customers surveyed responded with scores approximately matching a 

normal distribution. The survey results are shown in Table 2.5.

TABLE 2.5

Survey results

7 3 3 6

4 4 4 5

5 5 8 9

5 5 5 7

6 8 6 2
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2.5.1.1 State the Null and Research Hypotheses The null hypothesis states 

that the observed sample has an approximately normal distribution. The research 

hypothesis states that the observed sample does not approximately resemble a normal 

distribution.

The null hypothesis is

HO: There is no difference between the observed distribution of survey scores 

and a normally distributed empirical sample.

The research hypothesis is

HA: There is a difference between the observed distribution of survey scores 

and a normally distributed empirical sample.

2.5.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use an α = 0.05 in our example. In other words, there is a 95% 

chance that any observed statistical difference will be real and not due to chance.

2.5.1.3 Choose the Appropriate Test Statistic We are seeking to compare 

our observed sample against a normally distributed empirical sample. The 

Kolmogorov–Smirnov one-sample test will provide this comparison.

2.5.1.4 Compute the Test Statistic First, determine the midpoint and standard 

deviation for the observed sample. Table 2.6 helps to manage the summations for 

this process.

TABLE 2.6

Survey score Score frequency

xi fi fixi f xi i
2

 1 0 0 0

 2 1 2 4

 3 2 6 18

 4 3 12 48

 5 6 30 150

 6 3 18 108

 7 2 14 98

 8 2 16 128

 9 1 9 81

10 0 0 0

n = 20 ∑ =f xi i 107 ∑ =f xi i
2

635
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Use Formula 2.11 to ind the midpoint:
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Then, use Formula 2.12 to ind the standard deviation:
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Now, determine the z-scores, empirical relative frequencies, and observed relative 

frequencies for each score value (see Table 2.7).

TABLE 2.7

Survey score Score frequency Empirical frequency Observed frequency

xi fi z-score p̂xi f̂r fr

 1 0 2.49 0.0064 0.006 0.000

 2 1 1.93 0.0266 0.020 0.050

 3 2 1.38 0.0838 0.064 0.100

 4 3 0.83 0.2033 0.140 0.150

 5 6 0.28 0.3897 0.250 0.300

 6 3 0.28 0.3897 0.250 0.150

 7 2 0.83 0.2033 0.140 0.100

 8 2 1.38 0.0838 0.064 0.100

 9 1 1.93 0.0266 0.020 0.050

10 0 2.49 0.0064 0.006 0.000

We will provide a sample calculation for survey score = 4 as seen in Table 

2.7. Use Formula 2.13 to calculate the z-scores:
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Use each z-score and Table B.1 in Appendix B to determine the probability associ-

ated with the each value, p̂xi:

 ˆ .p4 0 2033=

To ind the empirical frequency value f̂r  for each value, subtract its preceding 

value, f̂r−1, from the associated probability value p̂xi. In other words,

 ˆ ˆ ˆf p fr x ri
= − −1

We establish our empirical frequency distribution beginning at the tail, xi = 1, and 

work to the midpoint, xi = 5:
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Our empirical frequency distribution is based on a normal distribution, which is 

symmetrical. Therefore, we can complete our empirical frequency distribution by 

basing the remaining values on a symmetrical distribution. Those values are in Table 

2.7.

Now, we ind the values of the observed frequency distribution fr with Formula 

2.14. We provide a sample calculation with survey result =  4. That survey value 

occurs three times:
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Next, we create cumulative frequency distributions using the empirical and observed 

frequency distributions. A cumulative frequency distribution is created by taking a 

frequency and adding all the preceding values. We demonstrate this in Table 2.8.

Now, we ind the absolute value divergence ɶD and D between the cumulative 

frequency distributions. Use Formula 2.15 and Formula 2.16. See the sample calcula-

tion for survey score = 4 as seen in bold in Table 2.9.
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TABLE 2.8

Survey score

Relative frequency Cumulative frequency

Empirical Observed Empirical Observed

xi f̂r fr F̂xi Sxi

 1 0.006 0.000 0.006 0.000

 2 0.020 0.050 0.020 + 0.006 = 0.026 0.050 + 0.000 = 0.050

 3 0.064 0.100 0.064 + 0.026 = 0.090 0.100 + 0.050 = 0.150

 4 0.140 0.150 0.140 + 0.090 = 0.230 0.150 + 0.150 = 0.300

 5 0.250 0.300 0.250 + 0.230 = 0.480 0.300 + 0.300 = 0.600

 6 0.250 0.150 0.250 + 0.480 = 0.730 0.150 + 0.600 = 0.750

 7 0.140 0.100 0.140 + 0.730 = 0.870 0.100 + 0.750 = 0.850

 8 0.064 0.100 0.064 + 0.870 = 0.934 0.100 + 0.850 = 0.950

 9 0.020 0.050 0.020 + 0.934 = 0.954 0.050 + 0.950 = 1.000

10 0.006 0.000 0.006 + 0.954 = 0.960 0.000 + 1.000 = 1.000

TABLE 2.9

Survey score

Cumulative frequency Cumulative frequency

Empirical Observed Divergence

xi F̂xi Sxi
ɶD D

 1 0.006 0.000 0.006

 2 0.026 0.050 0.024 0.026

 3 0.090 0.150 0.060 0.040

 4 0.230 0.300 0.070 0.080

*5 0.480 0.600 0.120 *0.180

 6 0.730 0.750 0.020 0.130

 7 0.870 0.850 0.020 0.120

 8 0.934 0.950 0.016 0.084

 9 0.954 1.000 0.046 0.004

10 0.960 1.000 0.040 0.040

To ind the test statistic Z, use the largest value from ɶD and D in Formula 2.17. Table 

2.9 has an asterisk next to the largest divergence. That value is located at survey 

value = 5. It is max , .D Dɶ( )= 0 180:
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2.5.1.5 Determine the p-Value Associated with the Test Statistic The 

Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula (see Formula 

2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and Formula 2.23) 

are used to ind the two-tailed probability estimate p. Since 0.27 ≤ Z < 1, we use 

Formula 2.19 and Formula 2.20:
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2.5.1.6 Compare the p-Value with the Level of Risk (or the Level of 
Signiicance) Associated with the Null Hypothesis The critical value for 

rejecting the null hypothesis is α = 0.05 and the obtained p-value is p = 0.536. If 

the critical value is greater than the obtained value, we must reject the null hypothesis. 

If the critical value is less than the obtained p-value, we must not reject the null 

hypothesis. Since the critical value is less than the obtained value (0.05 < 0.536), 

we do not reject the null hypothesis.

2.5.1.7 Interpret the Results We did not reject the null hypothesis, suggesting 

the customers’ survey ratings of employee friendliness suficiently resembled a 

normal distribution. This means that a parametric statistical procedure may be used 

with this sample.

2.5.1.8 Reporting the Results When reporting the results from the Kolmogorov–

Smirnov one-sample test, we include the test statistic (D), the degrees of freedom 

(which equals the sample size), and the p-value in terms of the level of risk α. Based 

on our analysis, the sample of customers is approximately normal, where 

D(20) = 0.180, p > 0.05.

2.5.2 Performing the Kolmogorov–Smirnov One-Sample 
Test Using SPSS

We will analyze the data from the example earlier using SPSS.

2.5.2.1 Deine Your Variables First, click the “Variable View” tab at the 

bottom of your screen. Then, type the names of your variables in the “Name” 

column. As shown in Figure 2.13, the variable is called “Survey.”
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2.5.2.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen. Type your sample values in the “Survey” column as shown in Figure 2.14.

FIGURE 2.13

FIGURE 2.14

2.5.2.3 Analyze Your Data As shown in Figure 2.15, use the pull-down menus 

to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “1-Sample K- 

S . . .”

Use the arrow button to place your variable with your data values in the box 

labeled “Test Variable List:” as shown in Figure 2.16. Finally, click “OK” to perform 

the analysis.

2.5.2.4 Interpret the Results from the SPSS Output Window SPSS Output 

2.2 provides the most extreme difference (D = 0.176), Kolmogorov–Smirnov Z-test 

statistic (Z = 0.789), and the signiicance (p = 0.562). Based on the results from 

SPSS, the p-value exceeds the level of risk associated with the null hypothesis 

(α =  0.05). Therefore, we do not reject the null hypothesis. In other words, the 

sample distribution is suficiently normal.
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FIGURE 2.15

FIGURE 2.16
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On an added note, differences between the values from the sample problem 

earlier and the SPSS output are likely due to value precision and computational 

round off errors.

2.6 SUMMARY

Parametric statistical tests, such as the t-test and one-way analysis of variance, are 

based on particular assumptions or parameters. Therefore, it is important that you 

examine collected data for its approximation to a normal distribution. Upon doing 

that, you can consider whether you will use a parametric or nonparametric test for 

analyzing your data.

In this chapter, we presented three quantitative measures of sample normality. 

First, we described how to examine a sample’s kurtosis and skewness. Then, we 

described how to perform and interpret a Kolmogorov–Smirnov one-sample test. In 

the following chapters, we will describe several nonparametric procedures for ana-

lyzing data samples that do not meet the assumptions needed for parametric statisti-

cal tests. In the chapter that follows, we will begin by describing a test for comparing 

two unrelated samples.

2.7 PRACTICE QUESTIONS

1. The values in Table 2.10 are a sample of reading-level score for a 9th-grade class. 

They are measured on a ratio scale. Examine the sample’s skewness and kurtosis 

for normality for α = 0.05. Report your indings.

2. Using a Kolmogorov–Smirnov one-sample test, examine the sample of values 

from Table 2.10. Report your indings.

SPSS OUTPUT 2.2
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2.8 SOLUTIONS TO PRACTICE QUESTIONS  

1. SPSS returned the following values:

skewness = −0.904

standard error of the skewness = 0.427

kurtosis = 0.188

standard error of the kurtosis = 0.833

The computed z-scores are as follows:

 zSk =−2 117.

and

 zK = 0 226.

At α = 0.05, the sample’s skewness fails the normality test, while the kurtosis 

passes the normality test. Based on our standard of α =  0.05, this sample of 

reading levels for 9th-grade students is not suficiently normal.

2. SPSS Output 2.3 shows the results from the Kolmogorov–Smirnov one-sample test.

Kolmogorov–Smirnov obtained value = 1.007

Two-Tailed signiicance = 0.263

SPSS OUTPUT 2.3

TABLE 2.10

Ninth-grade reading-level score

8.10 8.20 8.20 8.70 8.70 8.80 8.80 8.90 8.90 8.90

9.20 9.20 9.20 9.30 9.30 9.30 9.40 9.40 9.40 9.40

9.50 9.50 9.50 9.50 9.60 9.60 9.60 9.70 9.70 9.90

According to the Kolmogorov–Smirnov one-sample test with α =  0.05, this 

sample of reading levels for 9th-grade students is suficiently normal.



CHAPTER 3

COMPARING TWO RELATED 

SAMPLES: THE WILCOXON 

SIGNED RANK AND THE  

SIGN TEST

3.1 OBJECTIVES

In this chapter, you will learn the following items:

• How to compute the Wilcoxon signed rank test.

• How to perform the Wilcoxon signed rank test using SPSS®.

• How to construct a median conidence interval based on the Wilcoxon 

signed rank test for matched pairs.

• How to compute the sign test.

• How to perform the sign test using SPSS.

3.2 INTRODUCTION

Imagine that you give an attitude test to a small group of people. After you deliver some 

type of treatment, say, a daily vitamin C supplement for several weeks, you give that 

same group of people another attitude test. Finally, you compare the two measures 

of attitude to see if there is any type of difference between the two sets of scores.

The two sets of test scores in the previous scenario are related or paired. This is 

because each person was tested twice. In other words, each test score in one group of 

scores has another test score counterpart. The Wilcoxon signed rank test and the sign 

test are nonparametric statistical procedures for comparing two samples that are paired 

or related. The parametric equivalent to these tests goes by names such as the Student’s 

t-test, t-test for matched pairs, t-test for paired samples, or t-test for dependent samples.

In this chapter, we will describe how to perform and interpret a Wilcoxon 

signed rank test and a sign test, using both small samples and large samples. In addition, 

we demonstrate the procedures for performing both tests using SPSS. Finally, we 

offer varied examples of these nonparametric statistics from the literature.
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3.3 COMPUTING THE WILCOXON SIGNED RANK 
TEST STATISTIC

The formula for computing the Wilcoxon T for small samples is shown in Formula 

3.1. The signed ranks are the values that are used to compute the positive and nega-

tive values in the formula:

 T R R= + −smaller of and Σ Σ  (3.1)

where ΣR+ is the sum of the ranks with positive differences and ΣR− is the sum of 

the ranks with negative differences.

After the T statistic is computed, it must be examined for signiicance. We 

may use a table of critical values (see Table B.3 in Appendix B). However, if the 

numbers of pairs n exceeds those available from the table, then a large sample 

approximation may be performed. For large samples, compute a z-score and use a 

table with the normal distribution (see Table B.1 in Appendix B) to obtain a critical 

region of z-scores. Formula 3.2, Formula 3.3, and Formula 3.4 are used to ind the 

z-score of a Wilcoxon signed rank test for large samples:

 x
n n

T =
+( )1

4
 (3.2)

where xT  is the mean and n is the number of matched pairs included in the 

analysis,

 s
n n n

T =
+ +( )( )1 2 1

24
 (3.3)

where sT is the standard deviation,

 z
T x

s

T

T

*=
−

 (3.4)

where z* is the z-score for an approximation of the data to the normal distribution 

and T is the T statistic.

At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups and does not describe the strength of the 

treatment. We can consider the effect size (ES) to determine the degree of association 

between the groups. We use Formula 3.5 to calculate the ES:

 ES
z

n
=  (3.5)

where |z| is the absolute value of the z-score and n is the number of matched pairs 

included in the analysis.

The ES ranges from 0 to 1. Cohen (1988) deined the conventions for ES as 

small = 0.10, medium = 0.30, and large = 0.50. (Correlation coeficient and ES are 

both measures of association. See Chapter 7 concerning correlation for more infor-

mation on Cohen’s assignment of ES’s relative strength.)
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3.3.1 Sample Wilcoxon Signed Rank Test (Small Data 
Samples)

The counseling staff of Clear Creek County School District has implemented a new 

program this year to reduce bullying in their elementary schools. The school district 

does not know if the new program resulted in improvement or deterioration. In order 

to evaluate the program’s effectiveness, the school district has decided to compare 

the percentage of successful interventions last year before the program began with 

the percentage of successful interventions this year with the program in place. In 

Table 3.1, the 12 elementary school counselors, or participants, reported the percent-

age of successful interventions last year and the percentage this year.

TABLE 3.1

Participants

Percentage of successful 

interventions

Last year This year

1 31 31

2 14 14

3 53 50

4 18 30

5 21 28

6 44 48

7 12 35

8 36 32

9 22 23

10 29 34

11 17 27

12 40 42

The samples are relatively small, so we need a nonparametric procedure. Since 

we are comparing two related, or paired, samples, we will use the Wilcoxon signed 

rank test.

3.3.1.1 State the Null and Research Hypotheses The null hypothesis states 

that the counselors reported no difference in the percentages last year and this year. 

The research hypothesis states that the counselors observed some differences between 

this year and last year. Our research hypothesis is a two-tailed, nondirectional 

hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: µD = 0

The research hypothesis is

HA: µD ≠ 0
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3.3.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

3.3.1.3 Choose the Appropriate Test Statistic The data are obtained from 

12 counselors, or participants, who are using a new program designed to reduce 

bullying among students in the elementary schools. The participants reported the 

percentage of successful interventions last year and the percentage this year. We are 

comparing last year’s percentages with this year’s percentages. Therefore, the data 

samples are related or paired. In addition, sample sizes are relatively small. Since 

we are comparing two related samples, we will use the Wilcoxon signed rank test.

3.3.1.4 Compute the Test Statistic First, compute the difference between 

each sample pair. Then, rank the absolute value of those computed differences. Using 

this method, the differences of zero are ignored when ranking. We have done this in 

Table 3.2.

TABLE 3.2

Participant

Percentage of successful 

interventions

Difference

Rank

SignLast year This year Without zero

1 31 31 0 Exclude

2 14 14 0 Exclude

3 53 50 –3 3 –

4 18 30 +12 9 +

5 21 28 +7 7 +

6 44 48 +4 4.5 +

7 12 35 +23 10 +

8 36 32 –4 4.5 –

9 22 23 +1 1 +

10 29 34 +5 6 +

11 17 27 +10 8 +

12 40 42 +2 2 +

Compute the sum of ranks with positive differences. Using Table 3.2, the ranks 

with positive differences are 9, 7, 4.5, 10, 1, 6, 8, and 2. When we add all of the 

ranks with positive difference we get ΣR+ = 47.5.

Compute the sum of ranks with negative differences. The ranks with negative 

differences are 3 and 4.5. The sum of ranks with negative difference is ΣR− = 7.5.

The obtained value is the smaller of the two rank sums. Therefore, the Wil-

coxon is T = 7.5.
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3.3.1.5 Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular 
Statistic Since the sample sizes are small, we use Table B.3 in Appendix B, which 

lists the critical values for the Wilcoxon T. As noted earlier in Table 3.2, the two 

counselors with score differences of zero were discarded. This reduces our sample 

size to n = 10. In this case, we look for the critical value under the two-tailed test 

for n = 10 and α = 0.05. Table B.3 returns a critical value for the Wilcoxon test of 

T = 8. An obtained value that is less than or equal to 8 will lead us to reject our null 

hypothesis.

3.3.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 8 and the obtained value is T = 7.5. If the 

critical value equals or exceeds the obtained value, we must reject the null hypothesis. 

If instead, the critical value is less than the obtained value, we must not reject the 

null hypothesis. Since the critical value exceeds the obtained value, we must reject 

the null hypothesis.

3.3.1.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between last year’s percentages and this year’s percentages. 

In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 

negative difference ranks (ΣR−), the difference is positive, showing a positive impact 

of the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.3.1.8 Reporting the Results When reporting the indings, include the T 

statistic, sample size, and p-value’s relation to α. The directionality of the difference 

should be expressed using the sum of the positive difference ranks (ΣR+) and sum 

of the negative difference ranks (ΣR−).

For this example, the Wilcoxon signed rank test (T = 7.5, n = 12, p < 0.05) 

indicated that the percentage of successful interventions was signiicantly different. 

In addition, the sum of the positive difference ranks (ΣR+ = 47.5) was larger than 

the sum of the negative difference ranks (ΣR− =  7.5), showing a positive impact 

from the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.3.2 Conidence Interval for the Wilcoxon Signed Rank Test

The American Psychological Association (2001) has suggested that researchers 

report the conidence interval for research data. A conidence interval is an inference 

to a population in terms of an estimation of sampling error. More speciically, it 

provides a range of values that fall within the population with a level of conidence 

of 100(1 − α)%.
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A median conidence interval can be constructed based on the Wilcoxon signed 

rank test for matched pairs. In order to create this conidence interval, all of the 

possible matched pairs (Xi,Xj) are used to compute the differences Di =  Xi −  Xj. 

Then, compute all of the averages uij of two difference scores using Formula 3.6. 

There will be a total of [n(n − 1)/2] + n averages.

 u D D i j nij i j= + ≤ ≤ ≤( )/2 1  (3.6)

We will perform a 95% conidence interval using the sample Wilcoxon signed 

rank test with a small data sample (as stated earlier). Table 3.1 provides the values 

for obtaining our conidence interval. We begin by using Formula 3.6 to compute 

all of the averages uij of two difference scores. For example,

 u D D11 1 1 2 3 3 2= + = − +−( ) ( )/ /

 u11 3=−

 u D D12 1 2 2 3 12 2= + = − +( ) ( )/ /

 u12 4 5= .

 u D D13 1 3 2 3 7 2= + = − +( ) ( )/ /

 u13 2=

Table 3.3 shows each value of uij.

TABLE 3.3

−3 12 7 4 23 −4 1 5 10 2

−3 −3 4.5 2 0.5 10 −3.5 −1 1 3.5 −0.5

12 12 9.5 8 17.5 4 6.5 8.5 11 7

7 7 5.5 15 1.5 4 6 8.5 4.5

4 4 13.5 0 2.5 4.5 7 3

23 23 9.5 12 14 16.5 12.5

−4 −4 −1.5 0.5 3 −1

1 1 3 5.5 1.5

5 5 7.5 3.5

10 10 6

2 2

Next, arrange all of the averages in order from smallest to largest. We have 

arranged all of the values for uij in Table 3.4.

The median of the ordered averages gives a point estimate of the population 

median difference. The median of this distribution is 4.5, which is the point estimate 

of the population.

Use Table B.3 in Appendix B to ind the endpoints of the conidence interval. 

First, determine T from the table that corresponds with the sample size and desired 
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conidence such that p = α/2. We seek to ind a 95% conidence interval. For our 

example, n = 10 and p = 0.05/2. The table provides T = 8.

The endpoints of the conidence interval are the Kth smallest and the Kth 

largest values of uij, where K = T + 1. For our example, K = 8 + 1 = 9. The ninth 

value from the bottom is 0.5 and the ninth value from the top is 12.0. Based on these 

indings, it is estimated with 95% conident that the difference of successful inter-

ventions due to the new bullying programs lies between 0.5 and 12.0.

3.3.3 Sample Wilcoxon Signed Rank Test (Large Data 
Samples)

Hearing of Clear Creek School District’s success with their antibullying program, 

Jonestown School District has implemented the program this year to reduce bullying 

in their own elementary schools. The Jonestown School District evaluates their program’s 

effectiveness by comparing the percentage of successful interventions last year before 

the program began with the percentage of successful interventions this year with the program 

in place. In Table 3.5, the 25 elementary school counselors, or participants, reported the 

percentage of successful interventions last year and the percentage this year.

TABLE 3.4

1 –4.0 12 1.0 22 4.0 34 6.5 45 10.0

2 −3.5 13 1.5 23 4.0 35 7.0 46 11.0

3 −3.0 14 1.5 24 4.0 36 7.0 47 12.0

4 −1.5 15 2.0 25 4.5 37 7.0 48 12.0

5 −1.0 15 2.0 26 4.5 38 7.5 49 12.5

6 −1.0 16 2.5 27 4.5 39 8.0 50 13.5

7 −0.5 17 3.0 28 5.0 40 8.5 51 14.0

8 0.0 18 3.0 29 5.5 41 8.5 52 15.0

9 0.5 19 3.0 30 5.5 42 9.5 53 16.5

10 0.5 20 3.5 31 6.0 43 9.5 54 17.5

11 1.0 21 3.5 32 6.0 44 10.0 55 23.0

TABLE 3.5

Participant

Percentage of successful interventions

Last year This year

1 53 50

2 18 43

3 21 28

4 44 48

5 12 35

6 36 32

(Continued)
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We will use the same nonparametric procedure to analyze the data. However, 

use a large sample (n ≥ 20) approximation.

3.3.3.1 State the Null and Research Hypotheses The null hypothesis states 

that the counselors reported no difference in the percentages last year and this year. 

The research hypothesis states that the counselors observed some differences between 

this year and last year. Our research hypothesis is a two-tailed, nondirectional 

hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: µD = 0

The research hypothesis is

HA: µD ≠ 0

3.3.3.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

Participant

Percentage of successful interventions

Last year This year

7 22 23

8 29 34

9 17 27

10 10 42

11 38 44

12 37 16

13 19 33

14 37 50

15 28 20

16 15 27

17 25 27

18 38 30

19 40 51

20 30 50

21 23 45

22 41 20

23 31 49

24 28 43

25 14 30

TABLE 3.5 (Continued)
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3.3.3.3 Choose the Appropriate Test Statistic The data are obtained from 

25 counselors, or participants, who are using a new program designed to reduce 

bullying among students in the elementary schools. The participants reported the 

percentage of successful interventions last year and the percentage this year. We are 

comparing last year’s percentages with this year’s percentages. Therefore, the data 

samples are related or paired. Since we are comparing two related samples, we will 

use the Wilcoxon signed rank test.

3.3.3.4 Compute the Test Statistic First, compute the difference between 

each sample pair. Then, rank the absolute value of those computed differences. We 

have done this in Table 3.6.

TABLE 3.6

Participant

Percentage of successful 

interventions

Difference Rank SignLast year This year

1 53 50 −3 3 −

2 18 43 +25 24 +

3 21 28 +7 8 +

4 44 48 +4 4.5 +

5 12 35 +23 23 +

6 36 32 −4 4.5 −

7 22 23 +1 1 +

8 29 34 +5 6 +

9 17 27 +10 11 +

10 10 42 +32 25 +

11 38 44 +6 7 +

12 37 16 −21 20.5 −

13 19 33 +14 15 +

14 37 50 +13 14 +

15 28 20 −8 9.5 −

16 15 27 +12 13 +

17 25 27 +2 2 +

18 38 30 −8 9.5 −

19 40 51 +11 12 +

20 30 50 +20 19 +

21 23 45 +22 22 +

22 41 20 −21 20.5 −

23 31 49 +18 18 +

24 28 43 +15 16 +

25 14 30 +16 17 +
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Compute the sum of ranks with positive differences. Using Table 3.6, when 

we add all of the ranks with positive difference, we get ΣR+ = 257.5.

Compute the sum of ranks with negative differences. The ranks with negative 

differences are 3, 4.5, 9.5, 9.5, 20.5, and 20.5. The sum of ranks with negative dif-

ference is ΣR− = 67.5.

The obtained value is the smaller of these two rank sums. Thus, the Wilcoxon 

T = 67.5.

Since our sample size is larger than 20, we will approximate it to a normal 

distribution. Therefore, we will ind a z-score for our data using a normal approxima-

tion. We must ind the mean xT and the standard deviation sT for the data:

 x
n n

T =
+
=

+( ) ( )1

4

25 25 1

4

 xT =162 5.

and

 s
n n n

T =
+ +

=
+ +

=
( )( ) ( )( ) ,1 2 1

24

25 25 1 50 1

24

33 150

24

 sT = 37 17.

Next, we use the mean, standard deviation, and the T-test statistic to calculate a 

z-score. Remember, we are testing the hypothesis that there is no difference in ranks 

of percentages of successful interventions between last year and this year:

 z
T x

s

T

T

*
. .

.
=
−

=
−67 5 162 5

37 17

 z* .=−2 56

3.3.3.5 Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular 
Statistic Table B.1 in Appendix B is used to establish the critical region of 

z-scores. For a two-tailed test with α = 0.05, we must not reject the null hypothesis 

if −1.96 ≤ z* ≤ 1.96.

3.3.3.6 Compare the Obtained Value to the Critical Value We ind that z* 

is not within the critical region of the distribution, −2.56 < −1.96. Therefore, we 

reject the null hypothesis. This suggests a difference in the percentage of successful 

interventions after the program was implemented.

3.3.3.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between last year’s percentages and this year’s percentages. 

In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 

negative difference ranks (ΣR−), the difference is positive, showing a positive impact 

of the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.
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At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups. In other words, the statistical test’s level 

of signiicance does not describe the strength of the treatment. The American Psy-

chological Association (2001), however, has called for a measure of the strength 

called the ES.

We can consider the ES for this large sample test to determine the degree of 

association between the groups. We use Formula 3.5 to calculate the ES. For the 

example, |z| = 2.56 and n = 25:

 ES
z

n
= =

−2 56

25

.

 ES = 0 51.

Our ES for the matched-pair samples is 0.51. This value indicates a high level of 

association between the percentage of successful interventions before and after the 

implementation of the new bullying program.

3.3.3.8 Reporting the Results For this example, the Wilcoxon signed rank test 

(T = 67.5, n = 25, p < 0.05) indicated that the percentage of successful interventions 

was signiicantly different. In addition, the sum of the positive difference ranks 

(ΣR+ = 257.5) was larger than the sum of the negative difference ranks (ΣR− = 67.5), 

showing a positive impact from the program. Moreover, the ES for the matched-pair 

samples was 0.51. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.4 COMPUTING THE SIGN TEST

You can analyze related samples more eficiently by reducing values to dichotomous 

results (“yes” or “no”) or (“+” or “−”). The sign test allows you to perform that 

analysis. Our procedure for performing the sign test is based on the method described 

by Gibbons and Chakraborti (2010).

We begin the procedure for performing a sign test by identifying whether each 

set from the related data samples demonstrates a positive difference, a negative dif-

ference, or no difference at all. Then, we ind the sum of the positive differences np 

and the sum of negative differences nn. Cases with no difference are ignored.

We perform the next part of the analysis based on the sum of differences. If 

np + nn = 0, then the one-sided probability is p = 0.5. If 0 < np + nn < 25, then p 

is calculated recursively from the binomial probability function using Formula 3.7. 

Table B.9 in Appendix B includes several factorials to simplify computation:

 P X
n

n X X
p pX n X( )

!

( )! !
( )=

−
⋅ ⋅ − −1  (3.7)

where n = np + nn and p is the probability of event occurrence.

If np + nn ≥ 25, we use Formula 3.8:


