

IA 1 1 Hydrogen 1.00794	1s ¹ Note similarity in the configurations of the alkali metals								
3 ? Li Lithium 6.941	1s ^{2<u>2s</u>1}								
11 2 Na 50dum 22.969770	1s ² 2s ² 2p ⁶ <u>3s¹</u>								
19 2 K 1 Potassium 39.0963	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ <u>4s¹</u>								
37 28 Rb 18 18 18 18 18 18 18 18 18 18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ¹								
55 2 Cs 18 Cesium 1 132.90545	$1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^6\frac{6s^1}{6s^1}$								
87 8 Fr 22 Francium 8 (223) 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶ <u>7s¹</u>								

Some Important Definitions

- Atomic Number
- Atomic Mass
- Valence electrons
- Shielding (screening) or Core electrons
- Nuclear Charge (Actual Nuclear Charge) (Z)
- Effective Nuclear Charge (Z_{eff})
- Shielding (Screening) effect

Periodic Trends

- Describe *trends* among the elements for: •Atomic size (radius),
- •Ionic size (radius),
- Ionization energy,
- •Electron affinity,
- •Electronegativity,
- Metallic and non-metallic character.

Atomic Size

Measure the Radius

There are several types of radius:

Types of Radii

- Covalent Radius
- Ionic Radius
- Metallic Radius
- Vander Waals radius

Covalent Radius It is half of experimentally determined distance between two nuclei of <u>similar atoms</u> bonded together by single covalent bond.

Metallic Radius

The half of the experimentally determined distance between the nuclei of two adjacent metal atoms in the crystalline solid material.

ALL Periodic Table Trends

Influenced by three factors:

- 1. Energy Level
- Higher energy levels are further away from the nucleus.
- 3. Shielding effect (blocking effect?)
- 2. Charge on nucleus (# protons)
- More charge pulls electrons in closer.
 (+) and (-) attract each other)

What do they influence?

Energy levels and Shielding

have an effect on the GROUP

Nuclear charge has an effect on a PERIOD _____

Atomic Size

Group Trends (top to bottom)

Atomic radius increases by increasing the atomic number moving down the group.

- 1. Energy levels (number of shells) increase,
- 2. Shielding effect increase as a result of increasing the repulsion forces between electrons.

lons

Cations: Positively charged particles.

<u>Metals</u> tend to <u>LOSE</u> electrons from their outer energy level

Sodium atom Na,

Sodium ion Na¹⁺

What about the size of Na and Na¹⁺?

Trends in Ionic Size

Cations

- <u>Cations are smaller than the parent atom</u>

 not only do they lose electrons, they lose an *entire energy level*.
- Cations of representative elements have the noble gas configuration <u>before</u> them.

Anions: Negatively charged particles Nonmetals tend to GAIN one or more electrons Chlorine atom (Cl) Chloride ion (Cl¹⁻) What about the size?

Ionization Energy (IE)

Ionization Energy (or Ionization Potential)

"It is the amount of energy required to *completely remove an electron* (from a gaseous atom) or ion".

$M(g) \rightarrow M^{+}(g) + e^{-}$

2nd and 3rd Ionization Energy

First ionization energy: The energy required to remove only the first electron. Second ionization energy: Is the energy required to remove the second electron.

Symbol	First	Second	Third
Н	1312	Why	did these values
_He	2731	5247 incre	ase SO MUCh?
Li	520	7297	11810
Ве	900	1757	(14840)
В	800	2430	3569
С	1086	2352	4619
Ν	1402	2857	4577
0	1314	3391	5301
F	1681	3375	6045
Ne	2080	3963	6276

Comment:

Ionization energy of hydrogen is greater than lithium? 1st IE

- H 1312 kJ /mol
- Li 520 kJ /mol

1^{st} IE < 2^{nd} IE < 3^{rd} IE

 $Mg(g) \rightarrow Mg^+(g) + e^-$ I₁ = 738 kJ/mol

 $Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$ I₂ = 1451 kJ/mol

Because it is more difficult to remove an electron from a positively charged particle than from neutral particle.

Variation along a period:

The ionization energy increases with increasing atomic number in a period.

_Why?

Answer:

Due to the increased nuclear charge and decreasing in atomic size, the valence electrons are more tightly held by the nucleus. Therefore more energy is needed to remove the electron and hence ionization energy keeps increasing.

Variation down a group

The ionization energy gradually decreases in moving from top to bottom in a group.

Why?

Answer:

- 1. Atomic Size (energy level), Shielding effect
- 2. Nuclear Charge

On moving down a group

- 1. Nuclear charge increases
- 2. Number of shells increases, hence atomic size increases, screening is almost constant
- 3. There is a increase in the number of inner electrons which shield the valence electrons from the nucleus

Thus IE decreases down the group

On moving across a period

- 1. The atomic size decreases
- 2. Nuclear charge increases
- Thus IE increases along a period

Electron affinity It is the amount of energy released when an electron is added to an isolated gaseous atom.

Atom (g) + electron \longrightarrow Anion (g) + energy

Energy = Exothermic (heat released) = -ve value = Endothermic (heat absorbed) = +ve value

If the atom has more tendency to accept an electron then the energy released will be large and consequently the electron affinity will be high.

		Elect	ron at	finities	of the r	nain-gr	oup ele	ments		
	1A (1)	Copyright G	The Mode	aweni conpa	nes, no. rem	norun requirer.	nor neproduce	or or ospay.	8A (18)	
-7	Н 72.8	2A (2)	1	3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He (0.0)	
 t	Li 59.6	Be (+18)		B -26.7	C - 122	N +7	0 - 141	F - 328	Ne (+29)	
P 5	Na 52.9	Mg (+21)		AI - 42.5	Si - 134	P - 72.0	S - 200	CI - 349	Ar (+35)	
	к 48.4	Ca (+186)		Ga - 28.9	Ge - 119	As - 78.2	Se - 195	Br - 325	Kr (+39)	
F 	Rb 46.9	Sr (+146)		In -28.9	Sn - 107	Sb - 103	Te - 190	I -295	Xe (+41)	
	Cs 45.5	Ba (+46)		TI 19.3	Pb - 35.1	Bi - 91.3	Po - 183	At -270	Rn (+41)	

Factors affecting electron affinity

□When the <u>nuclear charge</u> is high there is greater attraction for the incoming electron. Therefore electron affinity increases as the nuclear charge increases.

□With the <u>increase in the size of the atom</u> the electron affinity decreases because the distance between the nucleus and the incoming electron increases.

Electron affinities are low or almost zero in elements having <u>stable electronic configurations</u> (half filled and completely filled valence sub-shells) because of the small tendency to accept additional electron.

Variation along a period

The size of an atom decreases and the nuclear charge increases on moving across a period. This results in greater attraction for the incoming electron. Hence the electron affinity increases in a period from left to right.

Variation down a group

As we move down a group the atomic size and nuclear size increases due to increasing of energy levels. Therefore, the additional electron feels less attracted by the large atom. Consequently the electron affinity decreases. Carbon has a greater affinity for an electron than nitrogen.

Since a half-filled "p" subshell is more stable, C has a greater affinity to gain an additional electron.

Electronegativity

Electronegativity:

Ability of an element to attract electrons toward itself when bonded to another element.

An <u>electronegative</u> element attracts electrons. An <u>electropositive</u> element releases electrons.

Atoms of different electronegativity Polar covalent bond Results when two different non-metals unequally share electrons between them.

Atoms of different electronegativity

• The greater the difference in electronegativity between two bonded atoms; the more polar the bond.

$$\dot{H}$$
 H $-\ddot{E}$: \dot{H} \dot{H} \dot{O} $-\dot{H}$ \dot{O} $-\dot{H}$ \dot{O} $-\dot{O}$ \dot{O} $-\dot{O}$ \dot{O} $-\dot{O}$ \dot{O} $-\dot{O}$ \dot{O} $-\dot{O}$ \dot{O} $-\dot{O}$ \dot{O} \dot{O} $-\dot{O}$ \dot{O} \dot{O} $-\dot{O}$ \dot{O} \dot{O} $-\dot{O}$ \dot{O} \dot{O} \dot{O} $-\dot{O}$ \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} $-\dot{O}$ \dot{O} $\dot{$

polar bonds connect atoms of different electronegativity

The greater is the difference in the electronegativity values of the combining atoms, greater is the polar character in the bond so formed. For example, in the series H - X (X=F, Cl, Br, I), the electronegativity difference between H and X atom follows the order:									
H- F > H - Cl > H - Br > H - I									
Electronegativity difference:	(4-2.1) 1.9	(3.0-2.1) 0.9	(2.8-2.1) 0.7	(2.5-2.1) 0.4					

Therefore, the polarity in the H - X bond follows the order H-F > H - Cl > H - Br > H Ii.e., H-F bond is the most polar and H-I bond is the least polar in this series of compounds.

Percent Ionic Character of a polar Covalent Bond

- It depends upon two factors:
- 1. Electronegativity difference of the bonded atoms
- 2. Dipole moment of the compound

1. Electronegativity Difference

 $\Delta EN > 1.7$ ionic bond - transfer

 $\Delta EN < 1.7$ covalent bond - sharing

So we have a range of electronegativity difference of 0 to 1.7 for sharing an electron pair.