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Instead of always using Definitions 1, 2, and 3 to verify the continuity of a func-
tion as we did in Example 4, it is often convenient to use the next theorem, which
shows how to build up complicated continuous functions from simple ones.

THEOREM If and are continuous at and is a constant, then the
following functions are also continuous at :

1. 2. 3.

4. 5. if 

PROOF Each of the five parts of this theorem follows from the corresponding Limit
Law in Section 1.4. For instance, we give the proof of part 1. Since and are con-
tinuous at , we have

Therefore

(by Law 1)

This shows that is continuous at .

It follows from Theorem 4 and Definition 3 that if and are continuous on an
interval, then so are the functions , and (if is never 0) . The
following theorem was stated in Section 1.4 as the Direct Substitution Property.

THEOREM
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is

continuous on its domain.

PROOF
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous. Since 

f t a c
a

f � t f � t cf

ft
f

t
t�a� � 0

4

f t

a

lim
x l a

f �x� � f �a� and lim
x l a

t�x� � t�a�

lim
x l a

� f � t��x� � lim
x l a

� f �x� � t�x��

� lim
x l a

f �x� � lim
x l a

t�x�

� f �a� � t�a�

� � f � t��a�

f � t a

f t

f � t, f � t, cf, ft t f�t

� � ��
, 
�

P�x� � cnxn � cn�1xn�1 � � � � � c1x � c0

c0, c1, . . . , cn

lim
x l a

c0 � c0

lim
x l a

xm � am m � 1, 2, . . . , n

5

f �x� � xm

t�x� � cxm
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is a sum of functions of this form and a constant function, it follows from part 1
of Theorem 4 that is continuous.

(b) A rational function is a function of the form

where and are polynomials. The domain of is . We
know from part (a) that and are continuous everywhere. Thus, by part 5 of The-
orem 4, is continuous at every number in .

As an illustration of Theorem 5, observe that the volume of a sphere varies contin-
uously with its radius because the formula shows that is a polynomial
function of . Likewise, if a ball is thrown vertically into the air with a velocity of
50 ft�s, then the height of the ball in feet seconds later is given by the formula

. Again this is a polynomial function, so the height is a continuous
function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits
very quickly, as the following example shows. Compare it with Example 1(b) in Sec-
tion 1.4.

EXAMPLE 5 Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . 
Therefore

■

It turns out that most of the familiar functions are continuous at every number in
their domains. For instance, Limit Law 10 (page 36) is exactly the statement that root
functions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 11 in
Section 1.2), we would certainly guess that they are continuous. And in Section 1.4
we showed that

In other words, the sine and cosine functions are continuous everywhere. It follows
from part 5 of Theorem 4 that

is continuous except where cos . This happens when x is an odd integer mul-
tiple of , so y � tan x has infinite discontinuities when
and so on (see Figure 5).

P
P

f �x� �
P�x�
Q�x�

D � x � � � Q�x� � 0�fQP
QP

Df

VV�r� � 4
3 �r 3

r
t

h � 50t � 16t 2

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x

f �x� �
x 3 � 2x 2 � 1

5 � 3x

{x � x � 5
3}

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x
� lim

x l�2
f �x� � f ��2�

�
��2�3 � 2��2�2 � 1

5 � 3��2�
� �

1

11

lim
� l a

sin � � sin a lim
� l a

cos � � cos a

tan x �
sin x

cos x

x � 0
x � ���2, �3��2, �5��2,��2
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SECTION 1.5  CONTINUITY 51

THEOREM The following types of functions are continuous at every 
number in their domains: polynomials, rational functions, root functions,
trigonometric functions

EXAMPLE 6 On what intervals is each function continuous?

(a) (b)

(c)

SOLUTION 
(a) is a polynomial, so it is continuous on by Theorem 5(a).

(b) is a rational function, so by Theorem 5(b) it is continuous on its domain,
which is . Thus is continuous on the inter-
vals , , and .

(c) We can write , where

is continuous on by Theorem 6. is a rational function, so it is continuous
everywhere except when , that is, . is also a rational function, but
its denominator is never 0, so is continuous everywhere. Thus, by parts 1 and 2 of
Theorem 4, is continuous on the intervals and . ■

Another way of combining continuous functions and to get a new continuous
function is to form the composite function . This fact is a consequence of the fol-
lowing theorem.

THEOREM If is continuous at and then
In other words,

Intuitively, Theorem 7 is reasonable because if is close to , then is close to
, and since is continuous at , if is close to , then is close to . A

proof of Theorem 7 is given in Appendix C.

THEOREM If is continuous at and is continuous at , then the
composite function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a
continuous function is a continuous function.”

PROOF Since is continuous at , we have

6

f �x� � x 100 � 2x 37 � 75 t�x� �
x 2 � 2x � 17

x 2 � 1

h�x� � sx �
x � 1

x � 1
�

x � 1

x 2 � 1

f ��
, 
�
t

D � x � x 2 � 1 � 0� � x � x � �1� t

��
, �1� ��1, 1� �1, 
�
h�x� � F�x� � G�x� � H�x�

F�x� � sx G�x� �
x � 1

x � 1
H�x� �

x � 1

x 2 � 1

F �0, 
� G
x � 1 � 0 x � 1 H

H
h �0, 1� �1, 
�

f t

f � t

f b lim
x la

t�x� � b, 
lim
x la

f �t�x�� � f �b�.
lim
x l a

f �t�x�� � f (lim
x l a

t�x�)

x a t�x�
b f b t�x� b f �t�x�� f �b�

t a f t�a�
f � t � f � t��x� � f �t�x�� a

t a

lim
x l a

t�x� � t�a�

7

8

■ This theorem says that a limit symbol
can be moved through a function sym-
bol if the function is continuous and the
limit exists. In other words, the order of
these two symbols can be reversed.
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Since is continuous at , we can apply Theorem 7 to obtain

which is precisely the statement that the function is continuous at ;
that is, is continuous at .

EXAMPLE 7 Where are the following functions continuous?

(a) (b) 

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous every-
where by Theorem 6. Thus is continuous on by Theorem 8.

(b) Notice that can be broken up as the composition of four continuous functions:

or    

where

We know that each of these functions is continuous on its domain (by Theorems 5
and 6), so by Theorem 8, is continuous on its domain, which is

■

An important property of continuous functions is expressed by the following theo-
rem, whose proof is found in more advanced books on calculus.

THE INTERMEDIATE VALUE THEOREM Suppose that is continuous on
the closed interval and let be any number between and ,
where . Then there exists a number in such that .

The Intermediate Value Theorem states that a continuous function takes on every
intermediate value between the function values and . It is illustrated by Fig-
ure 6. Note that the value can be taken on once [as in part (a)] or more than once
[as in part (b)].

f b � t�a�

lim
x l a

f �t�x�� � f �t�a��

h�x� � f �t�x�� a
f � t a

h�x� � sin�x 2 � F�x� �
1

sx 2 � 7 � 4

h�x� � f �t�x��

t�x� � x 2 and f �x� � sin x

t � f
h � f � t �

F

F � f � t � h � k F�x� � f �t�h�k�x����

f �x� �
1

x
t�x� � x � 4 h�x� � sx k�x� � x 2 � 7

F

{x � � � sx 2 � 7 � 4} � �x � x � �3� � ���, �3� � ��3, 3� � �3, ��

f
�a, b� N f �a� f �b�

f �a� � f �b� c �a, b� f �c� � N

f �a� f �b�
N

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

a c b

y=ƒ

FIGURE 6 

V

9
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If we think of a continuous function as a function whose graph has no hole or
break, then it is easy to believe that the Intermediate Value Theorem is true. In geo-
metric terms it says that if any horizontal line is given between and

as in Fig ure 7, then the graph of can’t jump over the line. It must intersect
somewhere.

It is important that the function in Theorem 9 be continuous. The Intermediate
Value Theorem is not true in general for discontinuous functions (see Exercise 36).

One use of the Intermediate Value Theorem is in locating roots of equations as in
the following example.

EXAMPLE 8 Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the
given equation, that is, a number between 1 and 2 such that . Therefore
we take , , and in Theorem 9. We have

and

Thus ; that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value 

Theorem again. Since

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval . ■

We can use a graphing calculator or computer to illustrate the use of the Interme-
diate Value Theorem in Example 8. Figure 8 shows the graph of in the viewing rect-
angle by and you can see that the graph crosses the -axis between 1
and 2. Fig ure 9 shows the result of zooming in to the viewing rectangle by

.

y � N y � f �a�
y � f �b� f
y � N

f

4x 3 � 6x 2 � 3x � 2 � 0

f �x� � 4x 3 � 6x 2 � 3x � 2
c f �c� � 0

a � 1 b � 2 N � 0

f �1� � 4 � 6 � 3 � 2 � �1 � 0

f �2� � 32 � 24 � 6 � 2 � 12 � 0

f �1� � 0 � f �2� N � 0 f �1� f �2� f

c f �c� � 0
4x 3 � 6x 2 � 3x � 2 � 0 c �1, 2�

f �1.2� � �0.128 � 0 and f �1.3� � 0.548 � 0

f �1.22� � �0.007008 � 0 and f �1.23� � 0.056068 � 0

�1.22, 1.23�

f
��1, 3� ��3, 3� x

�1.2, 1.3�
��0.2, 0.2�

0.2

_0.2

1.2 1.3

FIGURE 9FIGURE 8

3

_3

_1 3

V
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1.5 EXERCISES

1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

3. (a) From the graph of , state the numbers at which is
discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left, 
or neither.

4. From the graph of , state the intervals on which is 
continuous.

5–8 ■ Sketch the graph of a function that is continuous except
for the stated discontinuity.

5. Discontinuous, but continuous from the right, at 2

6. Discontinuities at and 4, but continuous from the left at
and from the right at 4

7. Removable discontinuity at 3, jump discontinuity at 5

8. Neither left nor right continuous at , continuous only
from the left at 2

f

f ���, ��

f f

f

y

x
_4 2 4 6_2

0

t t

y

x
_4 2 4 6_2 8

f

�1
�1

�2

9. The toll charged for driving on a certain stretch of a toll
road is $5 except during rush hours (between 7 AM and 
10 AM and between 4 PM and 7 PM) when the toll is $7.
(a) Sketch a graph of as a function of the time , mea-

sured in hours past midnight.
(b) Discuss the discontinuities of this function and their 

significance to someone who uses the road.

10. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of

time
(b) The temperature at a specific time as a function of the

distance due west from New York City
(c) The altitude above sea level as a function of the distance

due west from New York City
(d) The cost of a taxi ride as a function of the distance 

traveled
(e) The current in the circuit for the lights in a room as a

function of time

11. Suppose and are continuous functions such that 
and . Find .

12–13 ■ Use the definition of continuity and the properties of
limits to show that the function is continuous at the given num-
ber .

12. ,  

13. ,  

14. Use the definition of continuity and the properties of 
limits to show that the function is 
continuous on the interval .

15–18 ■ Explain why the function is discontinuous at the given
number . Sketch the graph of the function.

15.

16.

17.

T

T t

f t

t�2� � 6 lim x l2 �3 f �x� � f �x�t�x�� � 36 f �2�

a

f �x� � 3x 4 � 5x � s
3 x 2 � 4 a � 2

f �x� � �x � 2x 3 �4 a � �1

f �x� � xs16 � x2 

��4, 4�

a

f �x� �
1

x � 2
a � �2

f �x� � 	 1

x � 2

1

    if  x � �2

    if  x � �2

a � �2

f �x� � 	1 � x 2

1
x

if x � 1

if x � 1
a � 1

In fact, the Intermediate Value Theorem plays a role in the very way these graph-
ing devices work. A computer calculates a finite number of points on the graph and
turns on the pixels that contain these calculated points. It assumes that the function is
continuous and takes on all the intermediate values between two consecutive points.
The computer therefore connects the pixels by turning on the intermediate pixels.
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where is the mass of the earth, is its radius, and is
the gravitational constant. Is a continuous function of ?

33. For what value of the constant is the function continu-
ous on ?

34. Find the values of and that make continuous
everywhere.

35. Which of the following functions has a removable dis-
continuity at ? If the discontinuity is removable, find a
function that agrees with for and is continuous
at .

(a) ,  

(b) ,  

(c) ,  

36. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let . Sketch
two pos sible graphs of , one showing that might not sat-
isfy the conclusion of the Intermediate Value Theorem and
one showing that might still satisfy the conclusion of the
Intermediate Value Theorem (even though it doesn’t satisfy
the hypothesis).

37. If , show that there is a number
such that .

38. Suppose is continuous on and the only solutions of
the equation are and . If ,
explain why .

39–42 ■ Use the Intermediate Value Theorem to show that
there is a root of the given equation in the specified interval.

39. ,  

40. ,

41. ,  

42. ,  

c f
���, ��

f �x� � 	cx 2 � 2x

x 3 � cx

if  x � 2

if  x � 2

a b f

f �x� �

x 2 � 4

x � 2

ax 2 � bx � 3

2x � a � b

if x � 2

if  2 	 x � 3

if x � 3

f
a

t f x � a
a

f �x� �
x 4 � 1

x � 1
a � 1

f �x� �
x 3 � x 2 � 2x

x � 2
a � 2

f �x� � �sin x � a � 


f
f �0� � 1 f �1� � 3

f f

f

f �x� � x 2 � 10 sin x c
f �c� � 1000

f �1, 5�
f �x� � 6 x � 1 x � 4 f �2� � 8
f �3� � 6

x 4 � x � 3 � 0 �1, 2�

s
3 x � 1 � x �0, 1�

N � 2

cos x � x �0, 1�

sin x � x 2 � x �1, 2�

GRM
rF18.

19–24 ■ Explain, using Theorems 4, 5, 6, and 8, why the func-
tion is continuous at every number in its domain. State the
domain.

19. 20.

21. 22.

23. 24.

; 25–26 ■ Locate the discontinuities of the function and
illustrate by graphing.

25. 26.

27–28 ■ Use continuity to evaluate the limit.

27. 28.

29–30 ■ Show that is continuous on .

29.

30.

31. Find the numbers at which the function

is discontinuous. At which of these points is continuous
from the right, from the left, or neither? Sketch the graph
of .

32. The gravitational force exerted by the earth on a unit mass
at a distance r from the center of the planet is

f �x� � 	 x 2 � x

x 2 � 1

1

    if  x � 1

    if  x � 1

a � 1

F�x� �
2x 2 � x � 1

x 2 � 1
G�x� �

x 2 � 1

2x 2 � x � 1

Q�x� �
s
3 x � 2

x 3 � 2
B�x� �

tan x

s4 � x 2 

M�x� � 1 �
1

x
F�x� � sin�cos�sin x��

y �
1

1 � sin x
y � tan sx

lim
x l4

5 � sx

s5 � x
lim
x l


sin�x � sin x�

f ���, ��

f �x� � 	 x 2 if  x � 1

sx if  x � 1

f �x� � 	sin x if x � 

4

cos x if x � 

4

f �x� � 	x � 2

2x 2

2 � x

if x � 0

if  0 	 x 	 1

if x � 1

f

f

F�r� �

GMr

R 3 if  r � R

GM

r 2 if  r � R
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1.6 LIMITS INVOLVING INFINITY
In this section we investigate the global behavior of functions and, in particular,
whether their graphs approach asymptotes, vertical or horizontal.

INFINITE LIMITS

In Example 8 in Section 1.3 we concluded that

does not exist

by observing, from the table of values and the graph of in Figure 1, that the
values of can be made arbitrarily large by taking close enough to 0. Thus the
values of do not approach a number, so does not exist.

To indicate this kind of behavior we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not exist:

can be made as large as we like by taking close enough to 0.
In general, we write symbolically

to indicate that the values of become larger and larger (or “increase without
bound”) as approaches .

lim
x l0

1

x 2

y � 1
x2

1
x2 x
f �x� limx l 0 �1
x 2 �

lim
x l0

1

x 2 � �

�

1
x 2 x

lim
x la

f �x� � �

f �x�
x a
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49. Show that the function

is continuous on .

50. (a) Show that the absolute value function is 
continuous everywhere.

(b) Prove that if is a continuous function on an interval,
then so is .

(c) Is the converse of the statement in part (b) also true? 
In other words, if is continuous, does it follow 
that is continuous? If so, prove it. If not, find a 
counterexample.

51. A Tibetan monk leaves the monastery at 7:00 AM and 
takes his usual path to the top of the mountain, arriving at
7:00 P M. The following morning, he starts at 7:00 AM at
the top and takes the same path back, arriving at the monas-
tery at 7:00 P M. Use the Intermediate Value Theorem to
show that there is a point on the path that the monk will
cross at exactly the same time of day on both days.

� f �
� f �

f

F�x� � � x �
f

f �x� � 	x 4 sin�1
x�
0

if  x � 0

if  x � 0

���, ��

43–44 ■ (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that
contains a root.

43. 44.

;45–46 ■ (a) Prove that the equation has at least one real root.
(b) Use your graphing device to find the root correct to three
decimal places.

45. 46.

47. Is there a number that is exactly 1 more than its cube?

48. If and are positive numbers, prove that the equation

has at least one solution in the interval .

x 5 � x 2 � 4 � 0 sx � 5 �
1

x � 3

ba

a

x 3 � 2x 2 � 1
�

b

x 3 � x � 2
� 0

��1, 1�

cos x � x 3 x 5 � x 2 � 2x � 3 � 0
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DEFINITION The notation

means that the values of can be made arbitrarily large (as large as we
please) by taking sufficiently close to (on either side of ) but not equal to .

Another notation for is

as    

Again, the symbol is not a number, but the expression is often read
as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 2.
Similarly, as shown in Figure 3,

means that the values of are as large negative as we like for all values of that
are sufficiently close to , but not equal to .

The symbol can be read as “the limit of , as approaches
, is negative infinity” or “ decreases without bound as approaches .” As an

example we have

Similar definitions can be given for the one-sided infinite limits

remembering that “ ” means that we consider only values of that are less than
, and similarly “ ” means that we consider only . Illustrations of these

four cases are given in Figure 4.

lim
x la

f �x� � �

f �x�
x a a a

limx l a f �x� � �

f �x� l � x l a

1

� lim x l a f �x� � �

f �x� x a

f �x� x a

f �x� x a

lim
x la

f �x� � ��

f �x� x
a a

limx l a f �x� � �� f �x� x
a f �x� x a

lim
x l0

 ��
1

x 2� � ��

lim
x la�

f �x� � � lim
x la�

f �x� � �

lim
x la�

f �x� � �� lim
x la�

f �x� � ��

x l a� x
a x l a� x � a

(d) lim  ƒ=_`

a0

x a+x a_

(c) lim  ƒ=_`

0 a

(a) lim  ƒ=`

0 a

x a_

(b) lim  ƒ=`

a

x a+

0

FIGURE 4 
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x

y

x

y

x

y
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■ A more precise version of Definition 1
is given at the end of this section.

x    a

FIGURE 2 
lim ƒ=`

x=a

y=ƒ

a0 x

y

0 x

y

x=a

y=ƒ

a

FIGURE 3 
lim ƒ=_`
x    a

■ When we say that a number is “large
negative,” we mean that it is negative but
its magnitude (absolute value) is large.
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DEFINITION The line is called a vertical asymptote of the curve
if at least one of the following statements is true:

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 4 the line is a vertical asymptote in each of the 

four cases shown.

EXAMPLE 1 Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a
small positive number and is close to 6. So the quotient is a large
positive number. Thus, intuitively, we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number
but is still a positive number (close to 6). So is a numerically large
negative number. Thus

The graph of the curve is given in Figure 5. The line is a
vertical asymptote. ■

EXAMPLE 2 Find the vertical asymptotes of .

SOLUTION Because

there are potential vertical asymptotes where . In fact, since 
as and as , whereas is positive (and not
near 0) when x is near , we have

and    

This shows that the line is a vertical asymptote. Similar reasoning shows 
that the lines , where n is an integer, are all vertical asymptotes of

. The graph in Figure 6 confirms this. ■

LIMITS AT INFINITY

In computing infinite limits, we let approach a number and the result was that the
values of became arbitrarily large (positive or negative). Here we let become arbi-
trarily large (positive or negative) and see what happens to .

x � a
y � f �x�

lim
x la

f �x� � � lim
x la�

f �x� � � lim
x la�

f �x� � �

lim
x la

f �x� � �� lim
x la�

f �x� � �� lim
x la�

f �x� � ��

y y � 1
x 2

limx l 0 �1
x 2 � � � x � a

2

lim
x l3�

2x

x � 3
lim

x l3�

2x

x � 3

x x � 3
2x 2x
�x � 3�

lim
x l3�

2x

x � 3
� �

x x � 3
2x 2x
�x � 3�

lim
x l3�

2x

x � 3
� ��

y � 2x
�x � 3� x � 3

f �x� � tan x

tan x �
sin x

cos x

cos x � 0 cos x l 0�

x l �

2�� cos x l 0� x l �

2�� sin x


2

lim
x l�

2��

tan x � � lim
x l�

2��

tan x � ��

x � 

2
x � �2n � 1�

2

f �x� � tan x

x
y x

y

__
x

y

π0_π

1

π

2

3π

 2

π

2

3π

 2

FIGURE 6 
y=tan x

FIGURE 5

5

y=

0 x

y

x=3

2x

x-3
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Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six 
decimal places, and the graph of has been drawn by a computer in Figure 7.

As grows larger and larger you can see that the values of get closer and clos-
er to 1. In fact, it seems that we can make the values of as close as we like to 1
by taking sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of approach as becomes larger and larger.

DEFINITION Let be a function defined on some interval . Then

means that the values of can be made as close to as we like by taking
sufficiently large.

Another notation for is

as  

The symbol does not represent a number. Nonetheless, the expression
is often read as 

“the limit of , as approaches infinity, is ”

or “the limit of , as becomes infinite, is ”

or “the limit of , as increases without bound, is ”

The meaning of such phrases is given by Definition 3. A more precise definition, sim-
ilar to the definition of Section 1.3, is given at the end of this section.

f

f �x� �
x 2 � 1

x 2 � 1

x
f

1
0

y=1

y=
≈-1

≈+1

FIGURE 7 

x

y

x f �x�
f �x�

x

lim
x l�

x 2 � 1

x 2 � 1
� 1

lim
x l�

f �x� � L

f �x� L x

f �a, ��

lim
x l�

f �x� � L

f �x� L x

limx l � f �x� � L

f �x� l L x l �

� lim
x l�

f �x� � L

f �x� x L

f �x� x L

f �x� x L

�, �

3
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x

0 �1
0
0.600000
0.800000
0.882353
0.923077
0.980198
0.999200
0.999800
0.999998�1000

�100
�50
�10

�5
�4
�3
�2
�1

f �x�
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Geometric illustrations of Definition 3 are shown in Figure 8. Notice that there are
many ways for the graph of to approach the line (which is called a horizon-
tal asymptote) as we look to the far right of each graph.

Referring back to Figure 7, we see that for numerically large negative values of ,
the values of are close to 1. By letting decrease through negative values with-
out bound, we can make as close to 1 as we like. This is expressed by writing

In general, as shown in Figure 9, the notation

means that the values of can be made arbitrarily close to by taking sufficiently
large negative.

Again, the symbol does not represent a number, but the expression
is often read as

“the limit of , as x approaches negative infinity, is L”

DEFINITION The line is called a horizontal asymptote of the
curve if either 

For instance, the curve illustrated in Figure 7 has the line as a horizontal
asymptote because 

The curve sketched in Figure 10 has both and as horizontal
asymptotes because

x

y

0

y=ƒ

y=L

0 x

y

y=ƒ

y=L

x

y

0

y=ƒ

y=L

x
f �x� x

f �x�

lim
x l��

x 2 � 1

x 2 � 1
� 1

f y � L

lim
x l��

f �x� � L

f �x� L x

��
limx l�� f �x� � L

f �x�

y � L
y � f �x�

lim
x l�

f �x� � L or lim
x l��

f �x� � L

y � 1

lim
x l�

x 2 � 1

x 2 � 1
� 1

y � f �x� y � �1 y � 2

lim
x l �

f �x� � �1 and lim
x l��

f �x� � 2

4
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x    `

FIGURE 8 
Examples illustrating lim ƒ=L

x    _`

FIGURE 9
Examples illustrating  lim  ƒ=L

0

y

x

y=ƒ

y=L

x0

y

y=ƒ

y=L
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EXAMPLE 3 Find the infinite limits, limits at infinity, and asymptotes for the func-
tion whose graph is shown in Figure 11.

SOLUTION We see that the values of become large as from both
sides, so

Notice that becomes large negative as x approaches 2 from the left, but large
positive as x approaches 2 from the right. So

Thus both of the lines and are vertical asymptotes.
As x becomes large, it appears that approaches 4. But as x decreases through

neg ative values, approaches 2. So

This means that both and are horizontal asymptotes. ■

EXAMPLE 4 Find and .

SOLUTION Observe that when is large, is small. For instance,

In fact, by taking large enough, we can make as close to 0 as we please.
Therefore, according to Definition 3, we have 

Similar reasoning shows that when is large negative, is small negative, so we
also have

It follows that the line (the -axis) is a horizontal asymptote of the curve
. (This is an equilateral hyperbola; see Figure 12.) ■

FIGURE 10

x0

y

y=2

y=_1

2

_1

y=ƒ

f

f �x� x l �1

lim
x l�1

f �x� � �

f �x�

lim
x l2�

f �x� � �� and lim
x l2�

f �x� � �

x � �1 x � 2
f �x�

f �x�

lim
x l�

f �x� � 4 and lim
x l��

f �x� � 2

y � 4 y � 2

lim
x l�

1

x
lim

x l��

1

x

x 1
x

1

100
� 0.01

1

10,000
� 0.0001

1

1,000,000
� 0.000001

x 1
x

lim
x l�

1

x
� 0

x 1
x

lim
x l��

1

x
� 0

y � 0 x
y � 1
x
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FIGURE 11

0 x

y

2

2

x

x    ` x    _`

1

x

1

x

0

y

FIGURE 12

lim    =0,   lim     =0

y=
1

x
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Most of the Limit Laws that were given in Section 1.4 also hold for limits at infin-
ity. It can be proved that the Limit Laws listed in Section 1.4 (with the exception of
Laws 9 and 10) are also valid if “ ” is replaced by “ ” or “ .” In
particular, if we combine Law 6 with the results of Example 4 we obtain the follow-
ing important rule for calculating limits.

If is a positive integer, then

EXAMPLE 5 Evaluate

SOLUTION As becomes large, both numerator and denominator become large, so
it isn’t obvious what happens to their ratio. We need to do some preliminary algebra. 

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of that occurs in the denomi-
nator. (We may assume that , since we are interested only in large values of .)
In this case the highest power of is , and so, using the Limit Laws, we have

[by ]

A similar calculation shows that the limit as is also . ■

EXAMPLE 6 Compute .

SOLUTION Because both and x are large when x is large, it’s difficult to
see what happens to their difference, so we use algebra to rewrite the function. We

x l a x l � x l ��

n

lim
x l�

1

xn � 0 lim
x l��

1

xn � 0

lim
x l�

3x 2 � x � 2

5x 2 � 4x � 1

x

x
x � 0 x

x x 2

lim
x l�

3x 2 � x � 2

5x 2 � 4x � 1
� lim

x l�

3x2 � x � 2

x2

5x2 � 4x � 1

x2

� lim
x l�

3 �
1

x
�

2

x 2

5 �
4

x
�

1

x 2

�

lim
x l�

�3 �
1

x
�

2

x 2�
lim
x l�

�5 �
4

x
�

1

x 2�
�

lim
x l�

3 � lim
x l�

1

x
� 2 lim

x l�

1

x 2

lim
x l�

5 � 4 lim
x l�

1

x
� lim

x l�

1

x 2

�
3 � 0 � 0

5 � 0 � 0

�
3

5

x l ��
3
5

lim
x l�

(sx 2 � 1 � x)

sx 2 � 1

5

V

5
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■ Figure 13 illustrates Example 5 by
showing how the graph of the given
rational function approaches the
horizontal asymptote .y � 3

5

1

y=0.6

x

y

0

FIGURE 13

y=
3≈-x-2

5≈+4x+1
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first multiply numerator and denominator by the conjugate radical:

Notice that the denominator of this last expression becomes large as
(it’s bigger than ). So

Figure 14 illustrates this result. ■

EXAMPLE 7 Evaluate .

SOLUTION If we let , then as . Therefore

(See Exercise 59.) ■

EXAMPLE 8 Evaluate .

SOLUTION As x increases, the values of sin x oscillate between and infinitely
often. Thus does not exist. ■

INFINITE LIMITS AT INFINITY

The notation

is used to indicate that the values of become large as becomes large. Similar
meanings are attached to the following symbols:

EXAMPLE 9 Find and .

SOLUTION When becomes large, also becomes large. For instance,

In fact, we can make as big as we like by taking large enough. Therefore we
can write

Similarly, when is large negative, so is . Thus

These limit statements can also be seen from the graph of in Figure 15. ■

lim
x l�

(sx 2 � 1 � x) � lim
x l�

(sx 2 � 1 � x) sx 2 � 1 � x

sx 2 � 1 � x

� lim
x l�

�x 2 � 1� � x 2

sx 2 � 1 � x
� lim

x l�

1

sx 2 � 1 � x

(sx 2 � 1 � x)
x l � x

lim
x l�

(sx 2 � 1 � x) � lim
x l�

1

sx 2 � 1 � x
� 0

lim
x l �

sin 
1

x

t � 1�x t l 0� x l �

lim
x l �

sin 
1

x
� lim

t l 0�
sin t � 0

lim
x l�

sin x

1 �1
limx l � sin x

lim
x l�

f �x� � �

f �x� x

lim
x l��

f �x� � � lim
x l�

f �x� � �� lim
x l��

f �x� � ��

lim
x l �

x 3 lim
x l��

x 3

x x 3

103 � 1000 1003 � 1,000,000 10003 � 1,000,000,000

x 3 x

lim
x l �

x 3 � �

x x 3

lim
x l��

x 3 � ��

y � x 3
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■ We can think of the given function as
having a denominator of 1.

FIGURE 14

y=   ≈+1œ„„„„„-x

x

y

0
1

1

y=˛

x

y

0

FIGURE 15
lim x#=`,   lim  x#=_`
x    ` x    _`
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EXAMPLE 10 Find .

| SOLUTION It would be wrong to write

The Limit Laws can’t be applied to infinite limits because is not a number 
( can’t be defined). However, we can write

because both and become arbitrarily large. ■

EXAMPLE 11 Find .

SOLUTION We divide numerator and denominator by (the highest power of that
occurs in the denominator):

because and as . ■

PRECISE DEFINITIONS

The following is a precise version of Definition 1.

DEFINITION Let be a function defined on some open interval that con-
tains the number , except possibly at itself. Then

means that for every positive number there is a positive number such that

if    

This says that the values of can be made arbitrarily large (larger than any given
number ) by taking close enough to (within a distance , where depends on ,
but with ). A geometric illustration is shown in Figure 16.

Given any horizontal line , we can find a number such that if we
restrict to lie in the interval but , then the curve lies
above the line . You can see that if a larger is chosen, then a smaller may
be required.

lim
x l�

�x 2 � x�

lim
x l�

�x 2 � x� � lim
x l�

x 2 � lim
x l�

x � � � �

�
� � �

lim
x l�

�x 2 � x� � lim
x l�

x�x � 1� � �

x x � 1

lim
x l�

x 2 � x

3 � x

x x

lim
x l�

x 2 � x

3 � x
� lim

x l�

x � 1

3

x
� 1

� ��

x � 1 l � 3�x � 1 l �1 x l �

f
a a

lim
x l a

f �x� � �

M �

0 � � x � a � � � then f �x� � M

f �x�
M x a � � M
x � a

y � M � � 0
x �a � �, a � �� x � a y � f �x�

y � M M �

6

FIGURE 16

0 x

y

y=MM

a

a+∂a-∂

■ www.stewartcalculus.com
See Additional Example A.
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EXAMPLE 12 Use Definition 6 to prove that .

SOLUTION Let be a given positive number. According to Definition 6, we need
to find a number such that

if    then    that is    

But . We can choose because

if    then    

Therefore, by Definition 6,

■

Similarly, means that for every negative number there is a
positive number such that if , then .

Definition 3 can be stated precisely as follows.

DEFINITION Let be a function defined on some interval . Then

means that for every there is a corresponding number such that

if    

In words, this says that the values of can be made arbitrarily close to (with-
in a distance , where is any positive number) by taking sufficiently large (larger
than , where depends on ). Graphically it says that by choosing large enough
(larger than some number ) we can make the graph of lie between the given hor-
izontal lines and as in Figure 17. This must be true no matter
how small we choose . 

M
�

0 � � x � � �
1

x 2 � M x 2 �
1

M

x 2 � 1�M &? � x � � 1�sM � � 1�sM

0 � � x � � � �
1

s�

1

x 2 �
1

� 2 � M

lim
x l 0

1

x 2 � �

lim
x l 0

1

x 2 � �V

limx l a f �x� � �� N
� 0 � � x � a � � � f �x� � N

f �a, ��

lim
x l �

f �x� � L

	 � 0 N

x � N then � f �x� � L � � 	

f �x� L
	 	 x

N N 	 x
N f

y � L � 	 y � L � 	
	

0

y

xN

L

when x is in here

ƒ is
in here

y=L-∑

y=L+∑

∑

∑

y=ƒ

FIGURE 17
lim ƒ=L
x    `

7

Module 1.3/1.6 illustrates 
Definition 7 graphically and numerically.
TEC
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Figure 18 shows that if a smaller value of is chosen, then a larger value of may
be required.

Similarly, means that for every there is a corresponding
number such that if , then .

EXAMPLE 13 Use Definition 7 to prove that .

SOLUTION Given , we want to find such that

if    then    

In computing the limit we may assume that . Then .
Let’s choose . So

if    then    

Therefore, by Definition 7,

Figure 19 illustrates the proof by showing some values of and the corresponding
values of .

N	

FIGURE 18
lim ƒ=L
x    `

0 xN

L

y=ƒ

y=L-∑

y=L+∑

y

	 � 0limx l�� f �x� � L

� f �x� � L � � 	x � NN

lim
x l �

1

x
� 0

N	 � 0

� 1

x
� 0 � � 	x � N

1�x � 	 &? x � 1�	x � 0
N � 1�	

� 1

x
� 0 � �

1

x
� 	x � N �

1

	

lim
x l �

1

x
� 0

	
N

FIGURE 19
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y

0 N=1

∑=1

x

y

0 N=5

∑=0.2

x

y

0 N=10

∑=0.1

■ www.stewartcalculus.com
See Additional Example B.
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1.6 EXERCISES

1. For the function whose graph is given, state the following.

(a) (b)

(c) (d)

(e) The equations of the asymptotes

2. For the function whose graph is given, state the following.

(a) (b)

(c) (d)

(e)

(f) The equations of the asymptotes

f

lim
x l�

f �x� lim
x l��

f �x�

lim
x l1

f �x� lim
x l3

f �x�

1 x

y

1

t

lim
x l�

t�x� lim
x l��

t�x�

lim
x l 0

t�x� lim
x l2�

t�x�

lim
x l2�

t�x�

1 x

y

1

3–8 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

3. ,  ,  

4. ,  ,  ,  

,  ,  

5.

6. ,  ,  ,  is odd

7.

8. is even

; 9. Guess the value of the limit

by evaluating the function for 
4, 5, 6, 7, 8, 9, 10, 20, 50, and . Then use a graph of 
to support your guess.

10. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 1, and

; (c) from a graph of .

lim
x l 0

f �x� � �� lim
x l��

f �x� � 5 lim
x l�

f �x� � �5

lim
x l 2

f �x� � � lim
x l�2�

f �x� � � lim
x l�2�

f �x� � ��

lim
x l��

f �x� � 0 lim
x l�

f �x� � 0 f �0� � 0

lim
x l2

f �x� � ��, lim
x l�

f �x� � �, lim
x l��

f �x� � 0,

lim
x l0�

f �x� � �, lim
x l0�

f �x� � ��

lim
x l �

f �x� � 3 lim
x l2�

f �x� � � lim
x l2�

f �x� � �� f

f �0� � 3, lim
x l0�

f �x� � 4, lim
x l0�

f �x� � 2,

lim
x l��

f �x� � ��, lim
x l 4�

f �x� � ��, lim
x l 4�

f �x� � �,

lim
x l�

f �x� � 3

lim
x l 3

f �x� � ��, lim
x l�

f �x� � 2, f �0� � 0, f

f

lim
x l�

x 2

2x

x � 0, 1, 2, 3,f �x� � x 2�2x

f100

lim
x l1�

1

x 3 � 1
lim

x l1�

1

x 3 � 1
xf �x� � 1��x 3 � 1�

f

Finally we note that an infinite limit at infinity can be defined as follows. The geo-
metric illustration is given in Figure 20.

DEFINITION Let be a function defined on some interval . Then

means that for every positive number there is a corresponding positive
number N such that

if    then    

Similar definitions apply when the symbol is replaced by .

lim
x l �

f �x� � �

M

x � N f �x� � M

� ��

f �a, ��8
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x    `

0 x

y

N

M

y=M
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(b) By calculating values of , give numerical estimates
of the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did
you get the same value or different values for these two
limits? [In view of your answer to part (a), you might
have to check your calculation for the second limit.]

; 35–36 ■ Find the horizontal and vertical asymptotes of each 
curve. Check your work by graphing the curve and estimating
the asymptotes.

35. 36.

; 37. (a) Estimate the value of

by graphing the function .
(b) Use a table of values of to guess the value of the

limit.
(c) Prove that your guess is correct.

; 38. (a) Use a graph of

to estimate the value of to one decimal
place.

(b) Use a table of values of to estimate the limit to
four decimal places.

(c) Find the exact value of the limit.

; 39. Estimate the horizontal asymptote of the function

by graphing for . Then calculate the equa-
tion of the asymptote by evaluating the limit. How do you
explain the discrepancy?

40. Find a formula for a function that has vertical asymptotes
and and horizontal asymptote .

41. Find a formula for a function that satisfies the following 
conditions:

,  ,  ,

,  

42. Evaluate the limits.

(a) (b)

43. A function is a ratio of quadratic functions and has a ver-
tical asymptote and just one -intercept, . It is
known that has a removable discontinuity at and

. Evaluate
(a) (b)

f �x�

y �
2x 2 � x � 1

x 2 � x � 2
F�x� �

x � 9

s4x 2 � 3x � 2

lim
x l��

(sx 2 � x � 1 � x)

f �x� � sx 2 � x � 1 � x
f �x�

f �x� � s3x 2 � 8x � 6 � s3x 2 � 3x � 1

lim x l � f �x�

f �x�

f �x� �
3x 3 � 500x 2

x 3 � 500x 2 � 100x � 2000

f �10 
 x 
 10

x � 1 x � 3 y � 1

f

lim
x l ��

f �x� � 0 lim
x l0

f �x� � �� f �2� � 0

lim
x l3�

f �x� � � lim
x l3�

f �x� � ��

lim
x l �

x sin 
1

x
lim
x l �

sx sin 
1

x

f
x � 4 x x � 1

f x � �1
limx l�1 f �x� � 2

f �0� lim
x l �

f �x�

; 11. Use a graph to estimate all the vertical and horizontal
asymptotes of the curve

; 12. (a) Use a graph of

to estimate the value of correct to two 
decimal places.

(b) Use a table of values of to estimate the limit to 
four decimal places.

13–33 ■ Find the limit.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33.

; 34. (a) Graph the function

How many horizontal and vertical asymptotes do you
observe? Use the graph to estimate the values of the
limits

and    

y �
x 3

x 3 � 2x � 1

f �x� � �1 �
2

x�x

lim x l � f �x�

f �x�

lim
x l�3�

x � 2

x � 3
lim

x l�3�

x � 2

x � 3

lim
x l��

cot xlim
x l1

2 � x

�x � 1�2

lim
x l 2�

x 2 � 2x

x 2 � 4x � 4
lim

x l 2��
x csc x

lim
x l �

1 � x 2

x 3 � x � 1
lim
x l �

3x � 2

2x � 1

lim
tl �

t � tst

2t 3�2 � 3t � 5
lim
t l �

st � t 2

2t � t 2

lim
x l �

x 2

sx 4 � 1
lim
x l �

�2x 2 � 1�2

�x � 1�2�x 2 � x�

lim
x l�

(s9x 2 � x � 3x)

lim
x l�

(sx 2 � ax � sx2 � bx )

lim
x l �

x 4 � 3x 2 � x

x 3 � x � 2
lim
x l�

sin2x

x 2

lim
x l�

cos x lim
x l ��

1 � x 6

x 4 � 1

lim
x l �

(x � sx ) lim
x l �

�x 2 � x 4 �

lim
x l ��

�x 4 � x 5 �

f �x� �
s2x 2 � 1

3x � 5

lim
x l��

s2x 2 � 1

3x � 5
lim
x l�

s2x 2 � 1

3x � 5
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50. (a) Show that .

; (b) By graphing the function in part (a) and the line
on a common screen, find a number such

that

if    

What if 1.9 is replaced by 1.99?

51. How close to do we have to take so that

52. Prove, using Definition 6, that .

53. Prove that .

; 54. For the limit 

illustrate Definition 7 by finding values of that corre-
spond to and .

; 55. Use a graph to find a number such that

if    

; 56. For the limit 

illustrate Definition 8 by finding a value of that corre-
sponds to .

57. (a) How large do we have to take so that ?
(b) Taking in , we have the statement

Prove this directly using Definition 7.

58. Prove, using Definition 8, that .

59. Prove that 

and

if these limits exist.

lim
x l�

4x 2 � 5x

2x 2 � 1
� 2

y � 1.9 N

4x 2 � 5x

2x 2 � 1
� 1.9

�3 x

1

�x � 3�4 � 10,000

lim
x l�3

1

�x � 3�4 � �

lim
x l �1�

5

�x � 1�3 � ��

lim
x l �

s4x2 � 1

x � 1
� 2

N
	 � 0.5 	 � 0.1

N

x � N then � 3x 2 � 1

2x 2 � x � 1
� 1.5 � � 0.05

lim
x l �

2x � 1

sx � 1
� �

N
M � 100

x 1�x 2 � 0.0001
n � 2

lim
x l �

1

x 2 � 0

lim
x l �

x 3 � �

lim
x l �

f �x� � lim
t l 0�

f �1�t�

lim
x l��

f �x� � lim
t l 0�

f �1�t�

x � N then

5

; 44. By the end behavior of a function we mean the behavior 
of its values as and as .
(a) Describe and compare the end behavior of the

functions

by graphing both functions in the viewing rectangles
by and by

.
(b) Two functions are said to have the same end behavior

if their ratio approaches 1 as . Show that P and
Q have the same end behavior.

45. Let and be polynomials. Find

if the degree of is (a) less than the degree of and 
(b) greater than the degree of .

46. Make a rough sketch of the curve ( an integer) 
for the following five cases:

(i) (ii) , odd

(iii) , even (iv) , odd

(v) , even

Then use these sketches to find the following limits.

(a) (b)

(c) (d)

47. Find if, for all ,

48. In the theory of relativity, the mass of a particle with 
velocity is

where is the mass of the particle at rest and is the
speed of light. What happens as ?

49. (a) A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the
tank at a rate of 25 L�min. Show that the concentration
of salt minutes later (in grams per liter) is

(b) What happens to the concentration as ?

x l � x l ��

P�x� � 3x 5 � 5x 3 � 2x Q�x� � 3x 5

	�2, 2
 	�2, 2
 	�10, 10

	�10,000, 10,000


x l �

P Q

lim
x l �

P�x�
Q�x�

P Q
Q

y � x n n

n � 0 n � 0 n

n � 0 n n � 0 n

n � 0 n

lim
x l0�

x n lim
x l0�

x n

lim
x l�

x n lim
x l��

x n

limx l � f �x� x � 5

4x � 1

x
� f �x� �

4x 2 � 3x

x 2

v

m �
m0

s1 � v2�c2 

m0 c
v l c�

t

C�t� �
30t

200 � t

t l �
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CHAPTER 1 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

70 CHAPTER 1 FUNCTIONS AND LIMITS

1. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of

a function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a func-
tion is even by looking at its graph? Give three examples
of an even function.

(b) What is an odd function? How can you tell if a function
is odd by looking at its graph? Give three examples of
an odd function.

4. What is an increasing function?

5. What is a mathematical model?

6. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the follow-
ing functions.
(a) (b)
(c) (d)

8. Draw, by hand, a rough sketch of the graph of each function.
(a) (b)
(c) (d)
(e) (f)

9. Suppose that has domain and has domain .
(a) What is the domain of ?
(b) What is the domain of ?
(c) What is the domain of ?

10. How is the composite function defined? What is its
domain?

11. Suppose the graph of is given. Write an equation for 
each of the graphs that are obtained from the graph of 
as follows.
(a) Shift 2 units upward.

t�x� � x 2f �x� � x
j�x� � x 4h�x� � x 3

y � tan xy � sin x
y � 1�xy � 2x

y � sxy � � x �
BtAf

f � t

f t

f�t

f � t

f
f

(b) Shift 2 units downward.
(c) Shift 2 units to the right.
(d) Shift 2 units to the left.
(e) Reflect about the x-axis.
(f ) Reflect about the y-axis.
(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
(i) Stretch horizontally by a factor of 2.
( j) Shrink horizontally by a factor of 2.

12. Explain what each of the following means and illustrate
with a sketch.
(a) (b)

(c) (d)

(e)

13. Describe several ways in which a limit can fail to exist.
Illustrate with sketches.

14. State the following Limit Laws.
(a) Sum Law (b) Difference Law
(c) Constant Multiple Law (d) Product Law
(e) Quotient Law (f) Power Law
(g) Root Law

15. What does the Squeeze Theorem say?

16. (a) What does it mean for f to be continuous at a?
(b) What does it mean for f to be continuous on the interval

? What can you say about the graph of such a 
function?

17. What does the Intermediate Value Theorem say?

18. (a) What does it mean to say that the line is a vertical
asymptote of the curve ? Draw curves to illus-
trate the various possibilities.

(b) What does it mean to say that the line is a horizon-
tal asymptote of the curve ? Draw curves to
illustrate the various possibilities.

lim
x la

f �x� � L lim
x la�

f �x� � L

lim
x la�

f �x� � L lim
x la

f �x� � �

lim
x l�

f �x� � L

���, ��

x � a
y � f �x�

y � L
y � f �x�

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If is a function, then .

2. If , then .

3. If is a function, then .

f f �s � t� � f �s� � f �t�

f �s� � f �t� s � t

f f �3x� � 3 f �x�

4. If and is a decreasing function, then
.

5. A vertical line intersects the graph of a function at most
once.

6. If and are functions, then .

x1 � x2 f
f �x1 � � f �x2 �

f t f � t � t � f
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1. Let be the function whose graph is given.
(a) Estimate the value of .
(b) Estimate the values of such that .
(c) State the domain of 
(d) State the range of 
(e) On what interval is increasing?
(f) Is even, odd, or neither even nor odd? Explain.

2. Determine whether each curve is the graph of a function 
of . If it is, state the domain and range of the function.
(a) (b)

f
f �2�
x f �x� � 3

f.
f.

f
f

y

x1

1

f

x

2

y

0 1x

2

y

0 1

x

17. If the line is a vertical asymptote of , then
is not defined at 1.

18. If and are polynomials and , then the rational
function has the vertical asymptote .

19. If is any real number, then .

20. If and , then there exists a number c
between 1 and 3 such that .

21. If f is continuous at 5 and and , then

22. If f is continuous on and and
then there exists a number r such that and .

23. Let be a function such that . Then 
there exists a positive number such that if ,
then .

24. If for all and exists, then
.

25. If is continuous at , so is .

26. If is continuous at , so is .

f t t�2� � 0
h�x� � f �x��t�x� x � 2

sx 2 � xx

f �3� � 0f �1� � 0
f �c� � 0

f �4� � 3f �5� � 2
limx l 2 f �4x 2 � 11� � 2.

f �1� � 3,f ��1� � 4	�1, 1

f �r� � �� r � � 1

lim x l 0 f �x� � 6f
0 � � x � � ��

� f �x� � 6 � � 1

lim x l 0 f �x�xf �x� � 1
lim x l 0 f �x� � 1

� f �af

fa� f �

y � f �x� fx � 1
7.

8.

9.

10. If and  , then
does not exist.

11. If and  , then
does not exist.

12. If exists, then the limit must be 

13. If p is a polynomial, then 

14. If and , then
.

15. A function can have two different horizontal asymptotes.

16. If has domain and has no horizontal asymptote,
then or .

lim
x l1

x 2 � 6x � 7

x 2 � 5x � 6
�

lim
x l1

�x 2 � 6x � 7�

lim
x l1

�x 2 � 5x � 6�

lim
x l1

x � 3

x 2 � 2x � 4
�

lim
x l1

�x � 3�

lim
x l1

�x 2 � 2x � 4�

limx l 5 f �x� � 2 limx l 5 t�x� � 0
limx l 5 	 f �x��t�x�


lim x l5 f �x� � 0 limx l 5 t�x� � 0
limx l 5 	 f �x��t�x�


limx l 6 	 f �x� t�x�
 f �6� t�6�.

limx l b p�x� � p�b�.

limx l 0 f �x� � � limx l 0 t�x� � �
limx l 0 	 f �x� � t�x�
 � 0

f 	0, ��
limx l � f �x� � � limx l � f �x� � ��

lim
x l4
� 2x

x � 4
�

8

x � 4� � lim
x l4

2x

x � 4
� lim

x l4

8

x � 4
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EXERCISES

3–6 ■ Find the domain and range of the function. Write your
answer in interval notation.

3. 4.

5. 6.

7. Suppose that the graph of is given. Describe how the
graphs of the following functions can be obtained from the
graph of 
(a) (b)
(c) (d)
(e) (f)

8. The graph of is given. Draw the graphs of the following 
functions.
(a) (b)

(c) (d)

f �x� � 2��3x � 1� t�x� � s16 � x 4 

y � 1 � sin x y � tan 2x

f

f.
y � f �x� � 8 y � f �x � 8�
y � 1 � 2 f �x� y � f �x � 2� � 2
y � �f �x� y � 3 � f �x�

f

y � f �x � 8� y � �f �x�
y � 2 � f �x� y � 1

2 f �x� � 1

y

x0 1

1
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25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36.

;37–38 ■ Use graphs to discover the asymptotes of the curve.
Then prove what you have discovered.

37. 38.

39. If for , find .

40. Prove that .

41–44 ■ Prove the statement using the precise definition of a
limit.

41. 42.

43. 44.

45. Let

(a) Evaluate each limit, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Where is discontinuous?
(c) Sketch the graph of .

46. Show that each function is continuous on its domain. State
the domain.

(a) (b)

47–48 ■ Use the Intermediate Value Theorem to show that
there is a root of the equation in the given interval.

47.

48. ,

lim
h l0

�h � 1�3 � 1

h
lim
t l2

t 2 � 4

t 3 � 8

lim
r l9

sr

�r � 9�4 lim
v l 4�

4 � v

� 4 � v �
lim
s l16

4 � ss

s � 16
lim
v l2

v 2 � 2v � 8

v 4 � 16

lim
x l �

1 � 2x � x 2

1 � x � 2x 2 lim
x l ��

1 � 2x 2 � x 4

5 � x � 3x 4

lim
x l �

(sx 2 � 4x � 1 � x)

lim
x l 1

� 1

x � 1
�

1

x 2 � 3x � 2�
lim
x l 0

cot 2x

csc x
lim
t l 0

t 3

tan3 2t

y �
cos2x

x 2 y � sx 2 � x � 1 � sx 2 � x

limx l1 f �x�0 � x � 32x � 1 � f �x� � x 2

limx l 0 x 2 cos�1�x 2 � � 0

lim
x l 0

s
3 x � 0lim

x l 2
�14 � 5x� � 4

lim
x l4�

2

sx � 4
� �lim

x l �

1

x 4 � 0

f �x� � �s�x

3 � x

�x � 3�2

if x � 0

if 0 � x � 3

if x � 3

lim
x l0

f �x�lim
x l0�

f �x�lim
x l0�

f �x�

lim
x l3

f �x�lim
x l3�

f �x�lim
x l3�

f �x�

f
f

h�x� � s
4 x � x 3 cos xt�x� �

sx 2 � 9

x 2 � 2

�1, 2�x 5 � x 3 � 3x � 5 � 0, 

�0, 1�2 sin x � 3 � 2x

9–14 ■ Use transformations to sketch the graph of the
function.

9. 10.

11. 12.

13. 14.

15. Determine whether is even, odd, or neither even nor odd.
(a) (b)
(c) (d)

16. Find an expression for the function whose graph consists
of the line segment from the point to the point

together with the top half of the circle with center
the origin and radius 1.

17. If and , find the functions (a) ,
(b) , (c) , (d) , and their domains.

18. Express the function as a composition
of three functions.

19. The graph of is given.
(a) Find each limit, or explain why it does not exist.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is discontinuous? Explain.

20. Sketch the graph of an example of a function that satis-
fies all of the following conditions:

,  ,  ,

,  ,

is continuous from the right at 3

21–36 ■ Find the limit.

21. 22.

23. 24.

y � �x � 2�2y � �sin 2x

y � 2 � sxy � 1 �
1
2 x 3

f �x� �
1

x � 2
f �x� � �1 � x

1 � x 2

if x � 0

if x � 0

f
f �x� � 2x 5 � 3x 2 � 2 f �x� � x 3 � x 7

f �x� � cos�x 2 � f �x� � 1 � sin x

��1, 0�
��2, 2�

f � tt�x� � sin xf �x� � sx
t � tf � ft � f

F�x� � 1�sx � sx

f

lim
x l�3�

f �x�lim
x l2�

f �x�

lim
x l4

f �x�

lim
x l�3

f �x�

lim
x l2�

f �x�lim
x l0

f �x�

lim
x l��

f �x�lim
x l�

f �x�

f

0 x

y

1

1

f

lim
x l�3

f �x� � �lim
x l �

f �x� � 0lim
x l��

f �x� � �2

lim
x l3�

f �x� � 2lim
x l3�

f �x� � ��

f

lim
x l3

x 2 � 9

x 2 � 2x � 3
lim
x l 0

cos�x � sin x�

lim
x l1�

x 2 � 9

x 2 � 2x � 3
lim

x l�3

x 2 � 9

x 2 � 2x � 3
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2.1 DERIVATIVES AND RATES OF CHANGE
The problem of finding the tangent line to a curve and the problem of finding the
velocity of an object involve finding the same type of limit, which we call a derivative.

THE TANGENT PROBLEM

The word tangent is derived from the Latin word tangens, which means “touching.”
Thus a tangent to a curve is a line that touches the curve. In other words, a tangent line
should have the same direction as the curve at the point of contact. How can this idea
be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line that inter-
sects the circle once and only once as in Figure 1(a). For more complicated curves this
definition is inadequate. Figure l(b) shows two lines and passing through a point

on a curve . The line intersects only once, but it certainly does not look like
what we think of as a tangent. The line , on the other hand, looks like a tangent but
it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the
parabola in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we
know its slope . The difficulty is that we know only one point, , on , whereas 
we need two points to compute the slope. But observe that we can compute an
approximation to by choosing a nearby point on the parabola (as in Fig-
ure 2) and computing the slope of the secant line . [A secant line, from the
Latin word secans, meaning cutting, is a line that cuts (intersects) a curve more than
once.]

L T
P C L C

T
C

(a) (b)

T

P

CT

L

FIGURE 1 

T
y � x 2

y � x 2

P�1, 1�

T
m P T

m Q�x, x 2 �

V

mPQ PQ
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DERIVATIVES
In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a
slope of a tangent line, or a velocity, or any instantaneous rate of change.

2

FIGURE 2 

x

y

0

y=≈

TQ{x, ≈}

P(1, 1)

■ www.stewartcalculus.com
See Additional Example A.
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We choose so that . Then

What happens as approaches 1? From Figure 3 we see that approaches 
along the parabola and the secant lines rotate about and approach the tangent
line .

It appears that the slope of the tangent line is the limit of the slopes of the
secant lines as approaches 1:

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at is

■

We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 4 illustrates this procedure for the
curve in Example 1. The more we zoom in, the more the parabola looks like a
line. In other words, the curve becomes almost indistinguishable from its tangent line.

mPQ �
x 2 � 1

x � 1

x Q P
PQ P

T

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

FIGURE 3 

Q � Px � 1

m
x

m � lim
x l1

x 2 � 1

x � 1
� lim

x l 1

�x � 1��x � 1�
x � 1

� lim
x l1

�x � 1� � 1 � 1 � 2

�1, 1�

y � 2x � 1ory � 1 � 2�x � 1�

y � x 2
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■ Point-slope form for a line through
the point with slope :

y � y1 � m�x � x1�
m�x1, y1�

In Visual 2.1A you can see how the
process in Figure 3 works for additional
functions.

TEC
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In general, if a curve has equation and we want to find the tangent line
to at the point , then we consider a nearby point , where ,
and compute the slope of the secant line :

Then we let approach along the curve by letting approach . If 
approaches a number , then we define the tangent to be the line through with
slope . (This amounts to saying that the tangent line is the limiting position of the
secant line as approaches . See Figure 5.)

DEFINITION The tangent line to the curve at the point
is the line through with slope

provided that this limit exists.

There is another expression for the slope of a tangent line that is sometimes easier
to use. If , then and so the slope of the secant line is

(See Figure 6 where the case is illustrated and is to the right of . If it hap-
pened that , however, would be to the left of .) Notice that as approaches
, approaches (because ) and so the expression for the slope of the 

C y � f �x�
C P�a, f �a�� Q�x, f �x�� x � a

PQ

mPQ �
f �x� � f �a�

x � a

Q P C x a mPQ

m T P
m

PQ Q P

FIGURE 5 

0 x

y

P

t

Q

Q

Q

0 x

y

a x

P{a, f(a)}

ƒ-f(a)

x-a

Q{x, ƒ}

y � f �x� P�a, f �a��
P

m � lim
x l a

f �x� � f �a�
x � a

h � x � a x � a � h PQ

mPQ �
f �a � h� � f �a�

h

h � 0 Q P
h � 0 Q P x

a h 0 h � x � a

FIGURE 4 Zooming in toward the point (1, 1) on the parabola y=≈

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

1
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0 x

y

a a+h

P{a, f(a)}

h

Q{a+h, f(a+h)}

t

FIGURE 6

f(a+h)-f(a)

Visual 2.1B shows an animation of
Figure 4.
TEC
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tangent line in Definition 1 becomes

EXAMPLE 2 Find an equation of the tangent line to the hyperbola at the 
point .

SOLUTION Let . Then the slope of the tangent at is

Therefore an equation of the tangent at the point is

which simplifies to

The hyperbola and its tangent are shown in Figure 7. ■

THE VELOCITY PROBLEM

In Section 1.3 we investigated the motion of a ball dropped from the CN Tower and
defined its velocity to be the limiting value of average velocities over shorter and
shorter time periods.

In general, suppose an object moves along a straight line according to an equation
of motion , where is the displacement (directed distance) of the object from
the origin at time . The function that describes the motion is called the position
function of the object. In the time interval from to the change in
position is . (See Figure 8.) The average velocity over this time inter-
val is

which is the same as the slope of the secant line in Figure 9.
Now suppose we compute the average velocities over shorter and shorter time inter-

vals . In other words, we let approach . As in the example of the falling
ball, we define the velocity (or instantaneous velocity) at time to be the
limit of these average velocities:

m � lim
h l 0

f �a � h� � f �a�
h

y � 3�x
�3, 1�

f �x� � 3�x �3, 1�

m � lim
h l 0

f �3 � h� � f �3�
h

� lim
h l 0

3

3 � h
� 1

h
� lim

h l 0

3 � �3 � h�
3 � h

h

� lim
h l 0

�h

h�3 � h�
� lim

h l 0
�

1

3 � h
� �

1

3

�3, 1�

y � 1 � �
1
3 �x � 3�

x � 3y � 6 � 0

s � f �t� s
t f

t � a t � a � h
f �a � h� � f �a�

average velocity �
displacement

time
�

f �a � h� � f �a�
h

PQ

�a, a � h� h 0
v�a� t � a

v�a� � lim
h l 0

f �a � h� � f �a�
h

2

3

FIGURE 7 

y=

(3, 1)

x+3y-6=0

x

y

0

3

x

0

P{a, f(a)}

Q{a+h, f(a+h)}

h

a+ha

s

t

mPQ=
average  
velocity

FIGURE 9

FIGURE 8

0 s

f(a+h)-f(a)

position at
time t=a

position at
time t=a+h

f(a)

f(a+h)

f(a+h)-f(a)
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This means that the velocity at time is equal to the slope of the tangent line at
(compare Equations 2 and 3).
Now that we know how to compute limits, let’s reconsider the problem of the fall-

ing ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of
the CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We first use the equation of motion to find the velocity
after seconds:

(a) The velocity after 5 s is m�s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the
ground at the time when , that is,

This gives

The velocity of the ball as it hits the ground is therefore

■

DERIVATIVES

We have seen that the same type of limit arises in finding the slope of a tangent line
(Equation 2) or the velocity of an object (Equation 3). In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or in engineering,
such as a rate of reaction in chemistry or a marginal cost in economics. Since this type
of limit occurs so widely, it is given a special name and notation.

DEFINITION The derivative of a function at a number , denoted by
, is

if this limit exists.

t � a
P

s � f �t� � 4.9t 2

v�a� a

v�a� � lim
h l 0

f �a � h� � f �a�
h

� lim
h l 0

4.9�a � h�2 � 4.9a 2

h

� lim
h l 0

4.9�a 2 � 2ah � h 2 � a 2 �
h

� lim
h l 0

4.9�2ah � h 2 �
h

� lim
h l 0

4.9�2a � h� � 9.8a

v�5� � �9.8��5� � 49

t1 s�t1� � 450

4.9t1
2 � 450

t1
2 �

450

4.9
and t1 � �450

4.9
� 9.6 s

v�t1� � 9.8t1 � 9.8�450

4.9
� 94 m�s

lim
h l0

f �a � h� � f �a�
h

f a
f ��a�

f ��a� � lim
h l0

f �a � h� � f �a�
h

V

4
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■ Recall from Section 1.3: The dis tance 
(in meters) fallen after seconds is .4.9t 2t

■ is read “ prime of .”aff ��a�

■ www.stewartcalculus.com
See Additional Example B.
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If we write , then and approaches if and only if
approaches . Therefore an equivalent way of stating the definition of the derivative,
as we saw in finding tangent lines, is

EXAMPLE 4 Find the derivative of the function at the 
number .

SOLUTION From Definition 4 we have

■

We defined the tangent line to the curve at the point to be the
line that passes through and has slope given by Equation 1 or 2. Since, by Defini -
tion 4, this is the same as the derivative , we can now say the following.

The tangent line to at is the line through whose
slope is equal to , the derivative of at .

If we use the point-slope form of the equation of a line, we can write an equation
of the tangent line to the curve at the point :

EXAMPLE 5 Find an equation of the tangent line to the parabola
at the point .

SOLUTION From Example 4 we know that the derivative of at
the number is . Therefore the slope of the tangent line at is

. Thus an equation of the tangent line, shown in Figure 10, is

or    ■

RATES OF CHANGE

Suppose is a quantity that depends on another quantity . Thus is a function of
and we write . If changes from to , then the change in (also called the
increment of ) is

a

f ��a� � lim
x l a

f �x� � f �a�
x � a

f �x� � x 2 � 8x � 9
a

f ��a� � lim
h l0

f �a � h� � f �a�
h

� lim
h l0

��a � h�2 � 8�a � h� � 9� � �a 2 � 8a � 9�
h

� lim
h l0

a 2 � 2ah � h 2 � 8a � 8h � 9 � a 2 � 8a � 9

h

� lim
h l0

2ah � h 2 � 8h

h
� lim

h l0
�2a � h � 8�

� 2a � 8

y � f �x� P�a, f �a��
P m

f ��a�

y � f �x� �a, f �a�� �a, f �a��
f ��a� f a

y � f �x� �a, f �a��

y � f �a� � f ��a��x � a�

y � x 2 � 8x � 9 �3, �6�

f �x� � x 2 � 8x � 9
a f ��a� � 2a � 8 �3, �6�

f ��3� � 2�3� � 8 � �2

y � ��6� � ��2��x � 3� y � �2x

y x y x
y � f �x� x x1 x2 x
x

�x � x2 � x1

5

V

V

x0hh � x � ax � a � h
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y=≈-8x+9

(3, _6)

y=_2x

FIGURE 10 

0 x

y
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and the corresponding change in is

The difference quotient

is called the average rate of change of y with respect to x over the interval
and can be interpreted as the slope of the secant line in Figure 11.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting approach and therefore letting approach . The
limit of these average rates of change is called the (instantaneous) rate of change of
y with respect to x at � , which is interpreted as the slope of the tangent to the
curve at :

We recognize this limit as being the derivative .
We know that one interpretation of the derivative is as the slope of the tan-

gent line to the curve when . We now have a second interpretation:

The derivative is the instantaneous rate of change of with
respect to when .

The connection with the first interpretation is that if we sketch the curve ,
then the instantaneous rate of change is the slope of the tangent to this curve at the
point where . This means that when the derivative is large (and therefore the
curve is steep, as at the point in Figure 12), the -values change rapidly. When the
derivative is small, the curve is relatively flat and the -values change slowly.

In particular, if is the position function of a particle that moves along a
straight line, then is the rate of change of the displacement with respect to 
the time . In other words, is the velocity of the particle at time . The speed
of the particle is the absolute value of the velocity, that is, 

In the following example we estimate the rate of change of the national debt with
respect to time. Here the function is defined not by a formula but by a table of values.

EXAMPLE 6 Let be the US national debt at time t. The table in the margin
gives approximate values of this function by providing end of year estimates, in
billions of dollars, from 1990 to 2010. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of with respect to
when , that is, the rate of increase of the national debt in 2000.

According to Equation 5,

y

�y � f �x2� � f �x1�

�y

�x
�

f �x2� � f �x1�
x2 � x1

�x1, x2�
PQ

x2 x1 �x 0

x x1

y � f �x� P�x1, f �x1��

instantaneous rate of change � lim
�x l 0

�y

�x
� lim

x2 l x1

f �x2� � f �x1�
x2 � x1

f ��x1�
f ��a�

y � f �x� x � a

f ��a� y � f �x�
x x � a

y � f �x�

x � a
P y

y
s � f �t�
f ��a� s

t f ��a� t � a

	 f ��a� 	.

D�t�

D��2000�

D��2000�
t � 2000

D��2000� � lim
t l 2000

D�t� � D�2000�
t � 2000

6

V

D t
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average rate of change � mPQ 

instantaneous rate of change �
slope of tangent at P  

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

Îy
P{⁄, fl}

FIGURE 11 

FIGURE 12
The y-values are changing rapidly
at P and slowly at Q.

P

Q

x

y

t

1990 3,233.3
1995 4,974.0
2000 5,674.2
2005 7,932.7
2010 13,050.8

D�t�
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2.1 EXERCISES

1. (a) Find the slope of the tangent line to the parabola
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the parabola and the tangent line. As a check 
on your work, zoom in toward the point until the
parabola and the tangent line are indistinguishable.

y � 4x � x 2 �1, 3�

�1, 3�

2. (a) Find the slope of the tangent line to the curve
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the curve and the tangent line in successively
smaller viewing rectangles centered at until the
curve and the line appear to coincide.

y � x � x 3 �1, 0�

�1, 0�

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

From this table we see that lies somewhere between 140.04 and 451.70
billion dollars per year. [Here we are making the reasonable assumption that the
debt didn’t fluctuate wildly between 1995 and 2005.] We estimate that the rate of
increase of the national debt of the United States in 2000 was the average of these
two numbers, namely

Another method would be to plot the debt function and estimate the slope of the
tangent line when . ■

The rate of change of the debt with respect to time in Example 6 is just one example
of a rate of change. Here are a few of the many others:

The velocity of a particle is the rate of change of displacement with respect to time.
Physicists are interested in other rates of change as well—for instance, the rate of
change of work with respect to time (which is called power). Chemists who study a
chemical reaction are interested in the rate of change in the concentration of a reac-
tant with respect to time (called the rate of reaction). A steel manufacturer is inter-
ested in the rate of change of the cost of producing tons of steel per day with respect
to (called the marginal cost). A biologist is interested in the rate of change of the
population of a colony of bacteria with respect to time. In fact, the computation of
rates of change is important in all of the natural sciences, in engineering, and even in
the social sciences.

All these rates of change can be interpreted as slopes of tangents. This gives added
significance to the solution of the tangent problem. Whenever we solve a problem
involving tangent lines, we are not just solving a problem in geometry. We are also
implicitly solving a great variety of problems involving rates of change in science and
engineering.

D��2000�

D��2000� � 296 billion dollars per year

t � 2000

x
x

80 CHAPTER 2 DERIVATIVES

; Graphing calculator or computer required Computer algebra system required 1 Homework Hints at stewartcalculus.comCAS

t

1990 244.09
1995 144.04
2005 451.70
2010 736.66

D�t� � D�2000�
t � 2000

■ A NOTE ON UNITS
The units for the average rate of change

are the units for divided by
the units for , namely, billions of dol-
lars per year. The instan taneous rate of
change is the limit of the average rates 
of change, so it is measured in the same
units: billions of dollars per year.

�t
�D�D��t

■ www.stewartcalculus.com
See Additional Examples C, D.
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12. If an arrow is shot upward on the moon with a velocity of
58 m�s, its height (in meters) after seconds is given by

.
(a) Find the velocity of the arrow after one second.
(b) Find the velocity of the arrow when .
(c) When will the arrow hit the moon?
(d) With what velocity will the arrow hit the moon?

13. The displacement (in meters) of a particle moving in a
straight line is given by the equation of motion ,
where is measured in seconds. Find the velocity of the 
par ticle at times , and .

14. The displacement (in meters) of a particle moving in a
straight line is given by , where is mea-
sured in seconds.
(a) Find the average velocity over each time interval:

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the

secant lines whose slopes are the average velocities in
part (a) and the tangent line whose slope is the instan-
taneous velocity in part (b).

15. For the function t whose graph is given, arrange the
following numbers in increasing order and explain your
reasoning:

16. Find an equation of the tangent line to the graph of
at if and .

17. If an equation of the tangent line to the curve at
the point where is , find and .

18. If the tangent line to at (4, 3) passes through the
point (0, 2), find and .

19. Sketch the graph of a function for which ,
, and .

20. Sketch the graph of a function for which
, ,

, , , and
.

t
H � 58t � 0.83t 2

t � a

s � 1�t 2

t
t � a, t � 1, t � 2 t � 3

s � t 2 � 8t � 18 t

�3, 4� �3.5, 4�
�4, 5� �4, 4.5�

t � 4
s t

0 t���2� t��0� t��2� t��4�

y=©

1 3 4_1
0 x

2

y

y � t�x� x � 5 t�5� � �3 t��5� � 4

y � f �x�
a � 2 y � 4x � 5 f �2� f ��2�

y � f �x�
f �4� f ��4�

f f �0� � 0
f ��0� � 3, f ��1� � 0 f ��2� � �1

t

t�0� � t�2� � t�4� � 0 t��1� � t��3� � 0
t��0� � t��4� � 1 t��2� � �1 limx l � t�x� � �
limx l �� t�x� � ��

3–6 ■ Find an equation of the tangent line to the curve at the 
given point.

3. ,  4. ,  

5. 6. ,  

7. (a) Find the slope of the tangent to the curve
at the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

8. (a) Find the slope of the tangent to the curve at
the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

9. The graph shows the position function of a car. Use the
shape of the graph to explain your answers to the follow-
ing questions.
(a) What was the initial velocity of the car?
(b) Was the car going faster at or at ?
(c) Was the car slowing down or speeding up at , 

and ?
(d) What happened between and ?

10. Shown are graphs of the position functions of two runners,
and , who run a 100-m race and finish in a tie.

(a) Describe and compare how the runners run the race.
(b) At what time is the distance between the runners the

greatest?
(c) At what time do they have the same velocity?

11. If a ball is thrown into the air with a velocity of 40 ft�s, its
height (in feet) after seconds is given by .
Find the velocity when .

y � 4x � 3x 2 �2, �4� y � x 3 � 3x � 1 �2, 3�

y � sx , (1, 1� y �
2x � 1

x � 2
�1, 1�

y � 3 � 4x 2 � 2x 3 x � a
�1, 5�

�2, 3�

y � 1�sx
x � a

�1, 1�
(4, 1

2 )

B C
A, B

C
D E

A

B

C

D E

t

s

0

A B

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

t y � 40t � 16t 2

t � 2
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39. The number of US cellular phone subscribers (in
millions) is shown in the table. (Midyear estimates are
given.)

(a) Find the average rate of cell phone growth
(i) from 2002 to 2006 (ii) from 2002 to 2004

(iii) from 2000 to 2002
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2002 by 
taking the average of two average rates of change.
What are its units?

(c) Estimate the instantaneous rate of growth in 2002 by
measuring the slope of a tangent.

40. The number of locations of a popular coffeehouse chain
is given in the table. (The numbers of locations as of Octo-
ber 1 are given.)

(a) Find the average rate of growth
(i) from 2006 to 2008 (ii) from 2006 to 2007

(iii) from 2005 to 2006
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2006 by 
taking the average of two average rates of change.
What are its units?

(c) Estimate the instantaneous rate of growth in 2006 by
measuring the slope of a tangent.

(d) Estimate the intantaneous rate of growth in 2007 and
compare it with the growth rate in 2006. What do you
conclude?

41. The cost (in dollars) of producing units of a certain com-
modity is .
(a) Find the average rate of change of with respect to

when the production level is changed
(i) from to 

(ii) from to 

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

N

N

x
C�x� � 5000 � 10x � 0.05x 2

C x

x � 100 x � 105
x � 100 x � 101

21. If , find and use it to find an equation
of the tangent line to the curve at the point

.

22. If , find and use it to find an equation
of the tangent line to the curve at the point

.

23. (a) If , find and use it to find an
equation of the tangent line to the curve

at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

24. (a) If , find and use it to find equa-
tions of the tangent lines to the curve at
the points and .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines on the same screen.

25–30 ■ Find .

25. 26.

27. 28.

29. 30.

31–36 ■ Each limit represents the derivative of some function
at some number . State such an and in each case.

31. 32.

33. 34.

35. 36.

37. A warm can of soda is placed in a cold refrigerator. Sketch
the graph of the temperature of the soda as a function of
time. Is the initial rate of change of temperature greater or
less than the rate of change after an hour?

38. A roast turkey is taken from an oven when its temperature
has reached 185°F and is placed on a table in a room
where the temperature is 75°F. The graph shows how the
temperature of the turkey decreases and eventually
approaches room temperature. By measuring the slope of
the tangent, estimate the rate of change of the temperature
after an hour.

�1, 2�

t�x� � x 4 � 2 t��1�
y � x 4 � 2

�1, �1�

F�x� � 5x��1 � x 2� F��2�

y �
5x

1 � x 2

�2, 2�

G�x� � 4x 2 � x 3 G��a�
y � 4x 2 � x 3

�2, 8� �3, 9�

f ��a�

f �t� � 2t 3 � tf �x� � 3x 2 � 4x � 1

f �x� � x �2f �t� �
2t � 1

t � 3

f �x� �
4

s1 � x
f �x� � s1 � 2x

f afa

lim
h l0

s
4 16 � h � 2

h
lim
h l0

�1 � h�10 � 1

h

lim
x l	�4

tan x � 1

x � 	�4
lim
x l5

2x � 32

x � 5

lim
t l1

t 4 � t � 2

t � 1
lim
h l0

cos�	 � h� � 1

h

f ��1�f �x� � 3x 2 � x 3

y � 3x 2 � x 3
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47. The quantity of oxygen that can dissolve in water depends
on the temperature of the water. (So thermal pollution influ-
ences the oxygen content of water.) The graph shows how
oxygen solubility varies as a function of the water temper-
ature .
(a) What is the meaning of the derivative ? What are

its units?
(b) Estimate the value of and interpret it.

48. The graph shows the influence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are 

its units?
(b) Estimate the values of and and interpret

them.

49–50 ■ Determine whether exists.

49.

50.

T
S��T �

S��16�

(mg/L)

4

8

12

16

S

0
T (°C)

Adapted from Kupchella & Hyland, Environmental Science: Living  
Within the System of Nature, 2d ed.; © 1989. Printed and  
electronically reproduced by permission of Pearson Education, Inc.,  
Upper Saddle River, NJ.

8 16 24 32 40

T
S

S��T �

S��15� S��25�

20
0 T (°C)10

S

(cm/s)

20

f ��0�

f �x� � 
x sin 
1

x
if  x � 0

0 if  x � 0

f �x� � 
x 2 sin 
1

x
if  x � 0

0 if  x � 0

S

(b) Find the instantaneous rate of change of with respect
to when . (This is called the marginal cost. Its
significance will be explained in Section 2.3.)

42. If a cylindrical tank holds 100,000 gallons of water, which
can be drained from the bottom of the tank in an hour, then
Torricelli’s Law gives the volume of water remaining in
the tank after minutes as

Find the rate at which the water is flowing out of the tank
(the instantaneous rate of change of with respect to ) as a
function of t. What are its units? For times t � 0, 10, 20, 30,
40, 50, and 60 min, find the flow rate and the amount of
water remaining in the tank. Summarize your findings in a
sentence or two. At what time is the flow rate the greatest?
The least?

43. The cost of producing x ounces of gold from a new gold
mine is dollars.
(a) What is the meaning of the derivative ? What are

its units?
(b) What does the statement mean?
(c) Do you think the values of will increase or

decrease in the short term? What about the long term?
Explain.

44. The number of bacteria after t hours in a controlled labora-
tory experiment is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited,

would that affect your conclusion? Explain.

45. Let be the temperature (in ) in Phoenix hours after
midnight on September 10, 2008. The table shows values of
this function recorded every two hours. What is the meaning
of ? Estimate its value.

46. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Is positive or negative? Explain.

C
x x � 100

V
t

V�t� � 100,000(1 �
1

60 t)2 0 
 t 
 60

V t

C � f �x�
f ��x�

f ��800� � 17
f ��x�

n � f �t�
f ��5�

f ��5� f ��10�

T�t� �F t

T ��8�

Q � f � p�
f ��8�

f ��8�
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2.2 THE DERIVATIVE AS A FUNCTION
In Section 2.1 we considered the derivative of a function at a fixed number :

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . 
So we can regard as a new function, called the derivative of and defined by Equa-
tion 2. We know that the value of at , , can be interpreted geometrically as the
slope of the tangent line to the graph of at the point .

The function is called the derivative of because it has been “derived” from 
by the limiting operation in Equation 2. The domain of is the set exists
and may be smaller than the domain of .

EXAMPLE 1 The graph of a function is given in Figure 1. Use it to sketch the
graph of the derivative .

SOLUTION We can estimate the value of the derivative at any value of by draw-
ing the tangent at the point and estimating its slope. For instance, for 
we draw the tangent at in Figure 2(a) and estimate its slope to be about , so

. This allows us to plot the point on the graph of directly
beneath . Repeating this procedure at several points, we get the graph shown in
Figure 2(b). Notice that the tangents at , , and are horizontal, so the derivative
is 0 there and the graph of crosses the -axis at the points , , and , directly
beneath A, B, and C. Between and the tangents have positive slope, so is
positive there. But between and the tangents have negative slope, so is
negative there.

f ��a� � lim
h l 0

f �a � h� � f �a�
h

f ��x� � lim
h l 0

f �x � h� � f �x�
h

f ��x�
f � f

f � x f ��x�
f �x, f �x��

f � f f
f � �x � f ��x� �

f

f
f �

x
�x, f �x��

P 3
2

f ��5� � 1.5 P��5, 1.5� f �

A B C
f � x A� B� C�

1

2

V

x � 5

P

FIGURE 1

1
0

1

y=ƒ

x

y

A B f ��x�
B C f ��x�

f a
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■

EXAMPLE 2
(a) If , find a formula for .
(b) Illustrate by comparing the graphs of and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the
variable is and that is temporarily regarded as a constant during the calculation
of the limit.

Pª (5, 1.5)

FIGURE 2 

y

B

A

m=0

m=0

m=0

mÅ

C

P

(a)

x

1

1
0

5

y=ƒ

y

Aª

Bª

Cª

(b)

x

1

1
0

5

y=fª(x)

3

2

f �x� � x 3 � x f ��x�
f f �

h x

V

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

��x � h�3 � �x � h�	 � �x 3 � x	
h

� lim
h l 0

x 3 � 3x 2h � 3xh 2 � h 3 � x � h � x 3 � x

h

� lim
h l 0

3x 2h � 3xh 2 � h 3 � h

h
� lim

h l 0
�3x 2 � 3xh � h 2 � 1� � 3x 2 � 1
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Visual 2.2 shows an animation of 
Figure 2 for several functions.
TEC
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(b) We use a graphing device to graph and in Figure 3. Notice that
when has horizontal tangents and is positive when the tangents have positive
slopes. So these graphs serve as a check on our work in part (a).

■

EXAMPLE 3 If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than
the domain of , which is . ■

Let’s check to see that the result of Example 3 is reasonable by looking at the
graphs of and in Figure 4. When is close to 0, is also close to , so

is very large and this corresponds to the steep tangent lines near
in Figure 4(a) and the large values of just to the right of 0 in Figure 4(b).

When is large, is very small and this corresponds to the flatter tangent lines at
the far right of the graph of and the horizontal asymptote of the graph of .

EXAMPLE 4 Find if .

SOLUTION

■

f ��x� � 0f �f
f ��x�f

2

_2

_2 2

2

_2

_2 2

f
f ª

FIGURE 3 

f �x� � sx f f �

f ��x� x � 0 f � �0, ��
f �0, ��

f f � x sx 0
f ��x� � 1
(2sx )
�0, 0� f ��x�

x f ��x�
f f �

f ��x� � lim
h l0

f �x � h� � f �x�
h

� lim
h l0

sx � h � sx

h

� lim
h l0

�sx � h � sx

h
�

sx � h � sx

sx � h � sx
�

� lim
h l0

�x � h� � x

h(sx � h � sx )
� lim

h l0

1

sx � h � sx

�
1

sx � sx
�

1

2sx

f � f �x� �
1 � x

2 � x

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

1 � �x � h�
2 � �x � h�

�
1 � x

2 � x

h

� lim
h l 0

�1 � x � h��2 � x� � �1 � x��2 � x � h�
h�2 � x � h��2 � x�

� lim
h l 0

�2 � x � 2h � x 2 � xh� � �2 � x � h � x 2 � xh�
h�2 � x � h��2 � x�

� lim
h l 0

�3h

h�2 � x � h��2 � x�
� lim

h l 0

�3

�2 � x � h��2 � x�
� �

3

�2 � x�2
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(a) ƒ=œ„x

1

2œ„x

(b) f ª (x)=

x

1

y

1
0

x

1

y

1
0

FIGURE 4 

Here we rationalize the numerator.

a c

b d
= § 

e

ad-bc

bd

1

e

-
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OTHER NOTATIONS

If we use the traditional notation to indicate that the independent variable is
and the dependent variable is , then some common alternative notations for the

derivative are as follows:

The symbols and are called differentiation operators because they indicate
the operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a
ratio (for the time being); it is simply a synonym for . Nonetheless, it is a very
useful and suggestive notation, especially when used in conjunction with increment
notation. Referring to Equation 2.1.6, we can rewrite the definition of derivative in
Leibniz notation in the form

If we want to indicate the value of a derivative in Leibniz notation at a specific
number , we use the notation

or    

which is a synonym for .

DIFFERENTIABLE FUNCTIONS

DEFINITION A function is differentiable at a if exists. It is dif-
ferentiable on an open interval [or or or ] if it
is differentiable at every number in the interval.

EXAMPLE 5 Where is the function differentiable?

SOLUTION If , then and we can choose small enough that
and hence . Therefore, for , we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .

y � f �x�
x y

f ��x� � y� �
dy

dx
�

df

dx
�

d

dx
f �x� � Df �x� � Dx f �x�

D d
dx

dy
dx
f ��x�

dy

dx
� lim

�x l 0

�y

�x

dy
dx
a

dy

dx 
x�a

dy

dx�x�a

f ��a�

f f ��a�
�a, b� �a, �� ���, a� ���, ��

f �x� � � x �
x � 0 � x � � x h

x � h � 0 � x � h � � x � h x � 0

f ��x� � lim
h l 0

� x � h � � � x �
h

� lim
h l 0

�x � h� � x

h
� lim

h l 0

h

h
� lim

h l 0
1 � 1

f x � 0
x � 0 � x � � �x h

x � h � 0 and so � x � h � � ��x � h� x � 0

f ��x� � lim
h l 0

� x � h � � � x �
h

� lim
h l 0

��x � h� � ��x�
h

� lim
h l 0

�h

h
� lim

h l 0
��1� � �1

f x � 0

3

V
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■ LEIBNIZ
Gottfried Wilhelm Leibniz was born in
Leipzig in 1646 and studied law, theology, 
philosophy, and mathematics at the univer-
sity there, graduating with a bachelor’s
degree at age 17. After earning his doctor-
ate in law at age 20, Leibniz entered the
diplomatic service and spent most of his
life traveling to the capitals of Europe on
political missions. In particular, he worked
to avert a French military threat against
Ger many and attempted to reconcile the
Catholic and Protestant churches.

His serious study of mathematics did not
begin until 1672 while he was on a diplo-
matic mission in Paris. There he built a cal-
culating machine and met scientists, like
Huygens, who directed his attention to the
latest develop ments in mathematics and sci-
ence. Leibniz sought to develop a symbolic
logic and system of notation that would
simplify logical reasoning. In particular, the
version of calculus that he published in
1684 established the notation and the rules
for finding derivatives that we use today.

Unfortunately, a dreadful priority dispute
arose in the 1690s between the followers of
Newton and those of Leibniz as to who had
invented calculus first. Leibniz was even
accused of plagiarism by members of the 
Royal Society in England. The truth is that 
each man invented calculus independently.
Newton arrived at his version of calculus
first but, because of his fear of controversy,
did not publish it immediately. So Leibniz’s
1684 account of calculus was the first to be
published.
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For we have to investigate

Let’s compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus is differentiable at all
except 0.

A formula for is given by

and its graph is shown in Figure 5(b). The fact that does not exist is reflected
geometrically in the fact that the curve does not have a tangent line at .
[See Figure 5(a).] ■

Both continuity and differentiability are desirable properties for a function to have.
The following theorem shows how these properties are related.

THEOREM If is differentiable at , then is continuous at .

PROOF To prove that is continuous at , we have to show that .
We do this by showing that the difference approaches 0.

The given information is that f is differentiable at a, that is,

exists (see Equation 2.1.5). To connect the given and the unknown, we divide and
multiply by (which we can do when ):

Thus, using the Product Law and (2.1.5), we can write

f ��0� � lim
h l 0

f �0 � h� � f �0�
h

� lim
h l 0

� 0 � h � � � 0 �
h

�if it exists�

lim
h l 0�

� 0 � h � � � 0 �
h

� lim
h l 0�

� h �
h

� lim
h l 0�

h

h
� lim

h l 0�
1 � 1

f ��0� f x

x � 0

lim
h l 0�

� 0 � h � � � 0 �
h

� lim
h l 0�

� h �
h

� lim
h l 0�

�h

h
� lim

h l 0�
��1� � �1

f �

f ��x� � �1

�1

if  x � 0

if  x � 0

f ��0�
y � � x � �0, 0�

f a f a

f a lim x l a f �x� � f �a�
f �x� � f �a�

f ��a� � lim
x l a

f �x� � f �a�
x � a

f �x� � f �a� x � a x � a

f �x� � f �a� �
f �x� � f �a�

x � a
�x � a�

lim
x l a

� f �x� � f �a�	 � lim
x l a

f �x� � f �a�
x � a

�x � a�

� lim
x l a

f �x� � f �a�
x � a

� lim
x l a

�x � a�

� f ��a� � 0 � 0

4
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x

1

y

_1

0

x

y

0

FIGURE 5

(a) y=ƒ=| x |

(b) y=fª(x) 

12297_ch02_ptg01_hr_084-093.qk_12297_ch02_ptg01_hr_084-093  1/17/12  2:22 PM  Page 88



To use what we have just proved, we start with and add and subtract :

Therefore is continuous at .

| NOTE The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function is continuous at 0
because

(See Example 6 in Section 1.4.) But in Example 5 we showed that is not differen-
tiable at 0.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

We saw that the function in Example 5 is not differentiable at 0 and Fig-
ure 5(a) shows that its graph changes direction abruptly when . In general, if the
graph of a function has a “corner” or “kink” in it, then the graph of has no tangent
at this point and is not differentiable there. [In trying to compute , we find that
the left and right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if
is not continuous at , then is not differentiable at . So at any discontinuity (for

instance, a jump discontinuity) fails to be differentiable.
A third possibility is that the curve has a vertical tangent line when ; that is,

is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 6 shows
one way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three
possibilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentia-
bility. If is differentiable at , then when we zoom in toward the point the 

f �x� f �a�

lim
x l a

f �x� � lim
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FIGURE 6
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