
498 C H A P T E R 8 Approximation Theory

8.1 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at nontabulated points, given
the experimental data in Table 8.1.

Table 8.1

xi yi xi yi

1 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 12.5
4 5.0 9 13.0
5 7.0 10 15.6

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the
actual relationship between x and y is linear. The likely reason that no line precisely fits the
data is because of errors in the data. So it is unreasonable to require that the approximating
function agree exactly with the data. In fact, such a function would introduce oscillations
that were not originally present. For example, the graph of the ninth-degree interpolating
polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple
using the commands

p := interp([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.3, 3.5, 4.2, 5.0, 7.0, 8.8, 10.1, 12.5, 13.0, 15.6], x):
plot(p, x = 1..10)

Figure 8.1
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The plot obtained (with the data points added) is shown in Figure 8.2.

Figure 8.2
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8.1 Discrete Least Squares Approximation 499

This polynomial is clearly a poor predictor of information between a number of the
data points. A better approach would be to find the “best” (in some sense) approximating
line, even if it does not agree precisely with the data at any point.

Let a1xi + a0 denote the ith value on the approximating line and yi be the ith given
y-value. We assume throughout that the independent variables, the xi, are exact, it is the
dependent variables, the yi, that are suspect. This is a reasonable assumption in most exper-
imental situations.

The problem of finding the equation of the best linear approximation in the absolute
sense requires that values of a0 and a1 be found to minimize

E∞(a0, a1) = max
1≤i≤10

{|yi − (a1xi + a0)|}.
This is commonly called a minimax problem and cannot be handled by elementary tech-
niques.

Another approach to determining the best linear approximation involves finding values
of a0 and a1 to minimize

E1(a0, a1) =
10∑

i=1

|yi − (a1xi + a0)|.

This quantity is called the absolute deviation. To minimize a function of two variables, we
need to set its partial derivatives to zero and simultaneously solve the resulting equations.
In the case of the absolute deviation, we need to find a0 and a1 with

0 = ∂

∂a0

10∑
i=1

|yi − (a1xi + a0)| and 0 = ∂

∂a1

10∑
i=1

|yi − (a1xi + a0)|.

The problem is that the absolute-value function is not differentiable at zero, and we might
not be able to find solutions to this pair of equations.

Linear Least Squares

The least squares approach to this problem involves determining the best approximating
line when the error involved is the sum of the squares of the differences between the y-values
on the approximating line and the given y-values. Hence, constants a0 and a1 must be found
that minimize the least squares error:

E2(a0, a1) =
10∑

i=1

[
yi − (a1xi + a0)

]2
.

The least squares method is the most convenient procedure for determining best linear
approximations, but there are also important theoretical considerations that favor it. The
minimax approach generally assigns too much weight to a bit of data that is badly in
error, whereas the absolute deviation method does not give sufficient weight to a point
that is considerably out of line with the approximation. The least squares approach puts
substantially more weight on a point that is out of line with the rest of the data, but will
not permit that point to completely dominate the approximation. An additional reason for
considering the least squares approach involves the study of the statistical distribution of
error. (See [Lar], pp. 463–481.)

The general problem of fitting the best least squares line to a collection of data
{(xi, yi)}mi=1 involves minimizing the total error,

E ≡ E2(a0, a1) =
m∑

i=1

[
yi − (a1xi + a0)

]2
,
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500 C H A P T E R 8 Approximation Theory

with respect to the parameters a0 and a1. For a minimum to occur, we need both

∂E

∂a0
= 0 and

∂E

∂a1
= 0,

that is,

0 = ∂

∂a0

m∑
i=1

[
(yi − (a1xi − a0)

]2 = 2
m∑

i=1

(yi − a1xi − a0)(−1)

and

0 = ∂

∂a1

m∑
i=1

[
yi − (a1xi + a0)

]2 = 2
m∑

i=1

(yi − a1xi − a0)(−xi).

The word normal as used here
implies perpendicular. The
normal equations are obtained by
finding perpendicular directions
to a multidimensional surface.

These equations simplify to the normal equations:

a0 · m + a1

m∑
i=1

xi =
m∑

i=1

yi and a0

m∑
i=1

xi + a1

m∑
i=1

x2
i =

m∑
i=1

xiyi.

The solution to this system of equations is

a0 =

m∑
i=1

x2
i

m∑
i=1

yi −
m∑

i=1

xiyi

m∑
i=1

xi

m

(
m∑

i=1

x2
i

)
−
(

m∑
i=1

xi

)2 (8.1)

and

a1 =
m

m∑
i=1

xiyi −
m∑

i=1

xi

m∑
i=1

yi

m

(
m∑

i=1

x2
i

)
−
(

m∑
i=1

xi

)2 . (8.2)

Example 1 Find the least squares line approximating the data in Table 8.1.

Solution We first extend the table to include x2
i and xiyi and sum the columns. This is shown

in Table 8.2.

Table 8.2 xi yi x2
i xiyi P(xi) = 1.538xi − 0.360

1 1.3 1 1.3 1.18
2 3.5 4 7.0 2.72
3 4.2 9 12.6 4.25
4 5.0 16 20.0 5.79
5 7.0 25 35.0 7.33
6 8.8 36 52.8 8.87
7 10.1 49 70.7 10.41
8 12.5 64 100.0 11.94
9 13.0 81 117.0 13.48

10 15.6 100 156.0 15.02

55 81.0 385 572.4 E =∑10
i=1(yi − P(xi))

2 ≈ 2.34
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8.1 Discrete Least Squares Approximation 501

The normal equations (8.1) and (8.2) imply that

a0 = 385(81)− 55(572.4)

10(385)− (55)2
= −0.360

and

a1 = 10(572.4)− 55(81)

10(385)− (55)2
= 1.538,

so P(x) = 1.538x − 0.360. The graph of this line and the data points are shown in Fig-
ure 8.3. The approximate values given by the least squares technique at the data points are
in Table 8.2.

Figure 8.3
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y � 1.538x � 0.360

Polynomial Least Squares

The general problem of approximating a set of data, {(xi, yi) | i = 1, 2, . . . , m}, with an
algebraic polynomial

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

of degree n < m− 1, using the least squares procedure is handled similarly. We choose the
constants a0, a1, . . ., an to minimize the least squares error E = E2(a0, a1, . . . , an), where

E =
m∑

i=1

(yi − Pn(xi))
2

=
m∑

i=1

y2
i − 2

m∑
i=1

Pn(xi)yi +
m∑

i=1

(Pn(xi))
2
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502 C H A P T E R 8 Approximation Theory

=
m∑

i=1

y2
i − 2

m∑
i=1

⎛
⎝ n∑

j=0

ajx
j
i

⎞
⎠ yi +

m∑
i=1

⎛
⎝ n∑

j=0

ajx
j
i

⎞
⎠

2

=
m∑

i=1

y2
i − 2

n∑
j=0

aj

(
m∑

i=1

yix
j
i

)
+

n∑
j=0

n∑
k=0

ajak

(
m∑

i=1

xj+k
i

)
.

As in the linear case, for E to be minimized it is necessary that ∂E/∂aj = 0, for each
j = 0, 1, . . . , n. Thus, for each j, we must have

0 = ∂E

∂aj
= −2

m∑
i=1

yix
j
i + 2

n∑
k=0

ak

m∑
i=1

xj+k
i .

This gives n+ 1 normal equations in the n+ 1 unknowns aj. These are

n∑
k=0

ak

m∑
i=1

xj+k
i =

m∑
i=1

yix
j
i , for each j = 0, 1, . . . , n. (8.3)

It is helpful to write the equations as follows:

a0

m∑
i=1

x0
i + a1

m∑
i=1

x1
i + a2

m∑
i=1

x2
i + · · · + an

m∑
i=1

xn
i =

m∑
i=1

yix
0
i ,

a0

m∑
i=1

x1
i + a1

m∑
i=1

x2
i + a2

m∑
i=1

x3
i + · · · + an

m∑
i=1

xn+1
i =

m∑
i=1

yix
1
i ,

...

a0

m∑
i=1

xn
i + a1

m∑
i=1

xn+1
i + a2

m∑
i=1

xn+2
i + · · · + an

m∑
i=1

x2n
i =

m∑
i=1

yix
n
i .

These normal equations have a unique solution provided that the xi are distinct (see
Exercise 14).

Example 2 Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Solution For this problem, n = 2, m = 5, and the three normal equations are

5a0 + 2.5a1 + 1.875a2 = 8.7680,

2.5a0 + 1.875a1 + 1.5625a2 = 5.4514,

1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015.

Table 8.3

i xi yi

1 0 1.0000
2 0.25 1.2840
3 0.50 1.6487
4 0.75 2.1170
5 1.00 2.7183

To solve this system using Maple, we first define the equations

eq1 := 5a0+ 2.5a1+ 1.875a2 = 8.7680:
eq2 := 2.5a0+ 1.875a1+ 1.5625a2 = 5.4514 :
eq3 := 1.875a0+ 1.5625a1+ 1.3828a2 = 4.4015

and then solve the system with

solve({eq1, eq2, eq3}, {a0, a1, a2})
This gives

{a0 = 1.005075519, a1 = 0.8646758482, a2 = .8431641518}
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8.1 Discrete Least Squares Approximation 503

Thus the least squares polynomial of degree 2 fitting the data in Table 8.3 is

P2(x) = 1.0051+ 0.86468x + 0.84316x2,

whose graph is shown in Figure 8.4. At the given values of xi we have the approximations
shown in Table 8.4.

Figure 8.4

y � 1.0051 � 0.86468x � 0.84316x2
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Table 8.4 i 1 2 3 4 5

xi 0 0.25 0.50 0.75 1.00
yi 1.0000 1.2840 1.6487 2.1170 2.7183

P(xi) 1.0051 1.2740 1.6482 2.1279 2.7129
yi − P(xi) −0.0051 0.0100 0.0004 −0.0109 0.0054

The total error,

E =
5∑

i=1

(yi − P(xi))
2 = 2.74× 10−4,

is the least that can be obtained by using a polynomial of degree at most 2.

Maple has a function called LinearFit within the Statistics package which can be used
to compute the discrete least squares approximations. To compute the approximation in
Example 2 we first load the package and define the data

with(Statistics): xvals := Vector([0, 0.25, 0.5, 0.75, 1]): yvals := Vector([1, 1.284, 1.6487,
2.117, 2.7183]):
To define the least squares polynomial for this data we enter the command

P := x→ LinearFit([1, x, x2], xvals, yvals, x): P(x)
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504 C H A P T E R 8 Approximation Theory

Maple returns a result which rounded to 5 decimal places is

1.00514+ 0.86418x + 0.84366x2

The approximation at a specific value, for example at x = 1.7, is found with P(1.7)

4.91242

At times it is appropriate to assume that the data are exponentially related. This requires
the approximating function to be of the form

y = beax (8.4)

or

y = bxa, (8.5)

for some constants a and b. The difficulty with applying the least squares procedure in a
situation of this type comes from attempting to minimize

E =
m∑

i=1

(yi − beaxi)2, in the case of Eq. (8.4),

or

E =
m∑

i=1

(yi − bxa
i )

2, in the case of Eq. (8.5).

The normal equations associated with these procedures are obtained from either

0 = ∂E

∂b
= 2

m∑
i=1

(yi − beaxi)(−eaxi)

and

0 = ∂E

∂a
= 2

m∑
i=1

(yi − beaxi)(−bxie
axi), in the case of Eq. (8.4);

or

0 = ∂E

∂b
= 2

m∑
i=1

(yi − bxa
i )(−xa

i )

and

0 = ∂E

∂a
= 2

m∑
i=1

(yi − bxa
i )(−b(ln xi)x

a
i ), in the case of Eq. (8.5).

No exact solution to either of these systems in a and b can generally be found.
The method that is commonly used when the data are suspected to be exponentially

related is to consider the logarithm of the approximating equation:

ln y = ln b+ ax, in the case of Eq. (8.4),

and

ln y = ln b+ a ln x, in the case of Eq. (8.5).
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8.1 Discrete Least Squares Approximation 505

In either case, a linear problem now appears, and solutions for ln b and a can be obtained
by appropriately modifying the normal equations (8.1) and (8.2).

However, the approximation obtained in this manner is not the least squares approxima-
tion for the original problem, and this approximation can in some cases differ significantly
from the least squares approximation to the original problem. The application in Exer-
cise 13 describes such a problem. This application will be reconsidered as Exercise 11 in
Section 10.3, where the exact solution to the exponential least squares problem is approxi-
mated by using methods suitable for solving nonlinear systems of equations.

Illustration Consider the collection of data in the first three columns of Table 8.5.

Table 8.5 i xi yi ln yi x2
i xi ln yi

1 1.00 5.10 1.629 1.0000 1.629
2 1.25 5.79 1.756 1.5625 2.195
3 1.50 6.53 1.876 2.2500 2.814
4 1.75 7.45 2.008 3.0625 3.514
5 2.00 8.46 2.135 4.0000 4.270

7.50 9.404 11.875 14.422

If xi is graphed with ln yi, the data appear to have a linear relation, so it is reasonable to
assume an approximation of the form

y = beax, which implies that ln y = ln b+ ax.

Extending the table and summing the appropriate columns gives the remaining data in
Table 8.5.

Using the normal equations (8.1) and (8.2),

a = (5)(14.422)− (7.5)(9.404)

(5)(11.875)− (7.5)2
= 0.5056

and

ln b = (11.875)(9.404)− (14.422)(7.5)

(5)(11.875)− (7.5)2
= 1.122.

With ln b = 1.122 we have b = e1.122 = 3.071, and the approximation assumes the form

y = 3.071e0.5056x.

At the data points this gives the values in Table 8.6. (See Figure 8.5.) �

Table 8.6 i xi yi 3.071e0.5056xi |yi − 3.071e0.5056xi |
1 1.00 5.10 5.09 0.01
2 1.25 5.79 5.78 0.01
3 1.50 6.53 6.56 0.03
4 1.75 7.45 7.44 0.01
5 2.00 8.46 8.44 0.02
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506 C H A P T E R 8 Approximation Theory

Figure 8.5
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Exponential and other nonlinear discrete least squares approximations can be obtain in
the Statistics package by using the commands ExponentialFit and NonlinearFit.

For example, the approximation in the Illustration can be obtained by first defining the
data with

X := Vector([1, 1.25, 1.5, 1.75, 2]): Y := Vector([5.1, 5.79, 6.53, 7.45, 8.46]):
and then issuing the command

ExponentialFit(X , Y , x)

gives the result, rounded to 5 decimal places,

3.07249e0.50572x

If instead the NonlinearFit command is issued, the approximation produced uses methods
of Chapter 10 for solving a system of nonlinear equations. The approximation that Maple
gives in this case is

3.06658(1.66023)x ≈ 3.06658e0.50695.

E X E R C I S E S E T 8.1

1. Compute the linear least squares polynomial for the data of Example 2.

2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the total
error E for the two polynomials.

3. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute
the error E in each case. Graph the data and the polynomials.

xi 1.0 1.1 1.3 1.5 1.9 2.1
yi 1.84 1.96 2.21 2.45 2.94 3.18
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8.1 Discrete Least Squares Approximation 507

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute
the error E in each case. Graph the data and the polynomials.

xi 0 0.15 0.31 0.5 0.6 0.75
yi 1.0 1.004 1.031 1.117 1.223 1.422

5. Given the data:

xi 4.0 4.2 4.5 4.7 5.1 5.5 5.9 6.3 6.8 7.1
yi 102.56 113.18 130.11 142.05 167.53 195.14 224.87 256.73 299.50 326.72

a. Construct the least squares polynomial of degree 1, and compute the error.

b. Construct the least squares polynomial of degree 2, and compute the error.

c. Construct the least squares polynomial of degree 3, and compute the error.

d. Construct the least squares approximation of the form beax , and compute the error.

e. Construct the least squares approximation of the form bxa, and compute the error.

6. Repeat Exercise 5 for the following data.

xi 0.2 0.3 0.6 0.9 1.1 1.3 1.4 1.6
yi 0.050446 0.098426 0.33277 0.72660 1.0972 1.5697 1.8487 2.5015

7. In the lead example of this chapter, an experiment was described to determine the spring constant k
in Hooke’s law:

F(l) = k(l − E).

The function F is the force required to stretch the spring l units, where the constant E = 5.3 in. is the
length of the unstretched spring.

a. Suppose measurements are made of the length l, in inches, for applied weights F(l), in pounds,
as given in the following table.

F(l) l

2 7.0
4 9.4
6 12.3

Find the least squares approximation for k.

b. Additional measurements are made, giving more data:

F(l) l

3 8.3
5 11.3
8 14.4

10 15.9

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total
experimental data?

8. The following list contains homework grades and the final-examination grades for 30 numerical
analysis students. Find the equation of the least squares line for this data, and use this line to determine
the homework grade required to predict minimal A (90%) and D (60%) grades on the final.
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508 C H A P T E R 8 Approximation Theory

Homework Final Homework Final

302 45 323 83
325 72 337 99
285 54 337 70
339 54 304 62
334 79 319 66
322 65 234 51
331 99 337 53
279 63 351 100
316 65 339 67
347 99 343 83
343 83 314 42
290 74 344 79
326 76 185 59
233 57 340 75
254 45 316 45

9. The following table lists the college grade-point averages of 20 mathematics and computer science
majors, together with the scores that these students received on the mathematics portion of the ACT
(American College Testing Program) test while in high school. Plot these data, and find the equation
of the least squares line for this data.

ACT Grade-point ACT Grade-point
score average score average

28 3.84 29 3.75
25 3.21 28 3.65
28 3.23 27 3.87
27 3.63 29 3.75
28 3.75 21 1.66
33 3.20 28 3.12
28 3.41 28 2.96
29 3.38 26 2.92
23 3.53 30 3.10
27 2.03 24 2.81

10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative
crash-survivability characteristics of cars in various classes. Find the least squares line that approxi-
mates these data. (The table shows the percent of accident-involved vehicles in which the most severe
injury was fatal or serious.)

Average Percent
Type Weight Occurrence

1. Domestic luxury regular 4800 lb 3.1
2. Domestic intermediate regular 3700 lb 4.0
3. Domestic economy regular 3400 lb 5.2
4. Domestic compact 2800 lb 6.4
5. Foreign compact 1900 lb 9.6

11. To determine a relationship between the number of fish and the number of species of fish in samples
taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SD] fit a linear least squares
polynomial to the following collection of data, which were collected in samples over a 2-year period.
Let x be the number of fish in the sample and y be the number of species in the sample.
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8.1 Discrete Least Squares Approximation 509

x y x y x y

13 11 29 12 60 14
15 10 30 14 62 21
16 11 31 16 64 21
21 12 36 17 70 24
22 12 40 13 72 17
23 13 42 14 100 23
25 13 55 22 130 34

Determine the linear least squares polynomial for these data.

12. To determine a functional relationship between the attenuation coefficient and the thickness of a
sample of taconite, V. P. Singh [Si] fits a collection of data by using a linear least squares polynomial.
The following collection of data is taken from a graph in that paper. Find the linear least squares
polynomial fitting these data.

Thickness (cm) Attenuation coefficient (dB/cm)

0.040 26.5
0.041 28.1
0.055 25.2
0.056 26.0
0.062 24.0
0.071 25.0
0.071 26.4
0.078 27.2
0.082 25.6
0.090 25.0
0.092 26.8
0.100 24.8
0.105 27.0
0.120 25.0
0.123 27.3
0.130 26.9
0.140 26.2

13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx moth
(Pachysphinx modesta), L. Schroeder [Schr1] used the following data to determine a relation be-
tween W , the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in
milliliters/hour. For biological reasons, it is assumed that a relationship in the form of R = bWa exists
between W and R.

a. Find the logarithmic linear least squares polynomial by using

ln R = ln b+ a ln W .

b. Compute the error associated with the approximation in part (a):

E =
37∑

i=1

(Ri − bWa
i )

2.

c. Modify the logarithmic least squares equation in part (a) by adding the quadratic term c(ln Wi)
2,

and determine the logarithmic quadratic least squares polynomial.

d. Determine the formula for and compute the error associated with the approximation in part (c).
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