Damietta university Faculty of engineering Mechanics sheets

Sheet No (1)

PROBLEMS

1- Determine the magnitude of the resultant force $\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2}$ and its direction, measured counterclockwise from the positive *x* axis.

- 2- If $\Theta = 60^{\circ}$ and F = 450 N, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.
- 3- If the magnitude of the resultant force is to be 500 N, directed along the positive y axis, determine the magnitude of force F and its direction Θ .

Prob. 2& 3

- 4- Determine the magnitude of the resultant force $F_R = F_1 + F_2$ and its direction, measured clockwise from the positive Θ axis.
- 5- Resolve the force F_1 into components acting along the *u* and *v* axes and determine the magnitudes of the components.
- 6- Resolve the force F_2 into components acting along the *u* and *v* axes and determine the magnitudes of the components.

7- The vertical force F acts downward at A on the two membered frame. Determine the magnitudes of the two components of F directed along the axes of AB and AC. Set F = 500 N.

- 9- The force acting on the gear tooth is F = 20 lb. Resolve this force into two components acting along the lines aa and bb.
- 10- The component of force F acting along line aa is required to be 30 lb. Determine the magnitude of F and its component along line bb.

Sheet No (1)

Prob. 9& 10

- 11- The plate is subjected to the two forces at A and B as shown. If $u = 60^{\circ}$, determine the magnitude of the resultant of these two forces and its direction measured clockwise from the horizontal.
- 12- Determine the angle Θ for connecting member A to the plate so that the resultant force of F_A and F_B is directed horizontally to the right. Also, what is the magnitude of the resultant force?

13- Determine the design angle Θ (0° $\leq \Theta \leq 90$ °) for strut AB so that the 400-lb horizontal force has a component of 500 lb directed from A towards C. What is the component of force acting along member AB? Take $\phi = 40^{\circ}$. 14- Determine the design angle Θ (0° $\leq \phi \leq 90^{\circ}$) between struts AB and AC so that the 400-lb horizontal force has a component of 600 lb which acts up to the left, in the same direction as from B towards A . Take $\Theta = 30^{\circ}$.

Sheet No (1)

- 15- Determine the magnitude and direction of the resultant $F_R = {}_{F1} + F_2 + F_3$ of the three forces by first finding the resultant $F` = F_1 + F_2$ and then forming $F_R = F` + F_3$.
- 16- Determine the magnitude and direction of the resultant $F_R = F_1 + F_2 + F_3$ of the three forces by first finding the resultant $F` = F_2 + F_3$ and then forming $F_R = F` + F_1$.

Prob. 15& 16

17-Two forces act on the screw eye. If F = 600 N, determine the magnitude of the resultant force and the angle Θ if the resultant force is directed vertically upward.

18-Two forces are applied at the end of a screw eye in order to remove the post. Determine the angle Θ (0° $\leq \Theta \leq$ 90°) and the magnitude of force F so that the resultant force acting on the post is directed vertically upward and has a magnitude of 750 N.

b

19- The forces **F**1, **F**2, and **F**3, all of which act on point *A* of the bracket, are specified in three different ways. Determine the *x* and *y* scalar components of each of the three forces.

20- Combine the two forces \mathbf{P} and \mathbf{T} , which act on the fixed structure at B, into a single equivalent force \mathbf{R} .

Sheet No (1)

21- Determine the scalar components R_a and R_b of the force R along the nonrectangular axes a and b. Also determine the orthogonal projection P_a of R onto axis a.

23- Determine the resultant R of the two forces shown by (a) applying the parallelogram rule for vector addition and (b) summing scalar components.

60°

400 N

600 N