Chapter 3
EQUILIBRIUM OF RIGID BODIES

3-1 Introduction

When the force and the couple are both equal to zero, the external forces form a system
equivalent to zero, and the rigid body is said to be in equilibrium. We can obtain the necessary

and sufficient conditions for the equilibrium of a rigid body by setting R and M§ equal to zero.

SF = 0 SM,=S @ X F)=0

(3-1)

Resolving each force and each moment into its rectangular components,
we can replace these vector equations for the equilibrium of a rigid body
with the following six scalar equations:
b — SE = S =
SF, = 0 SF, = 0 SF, =0 (3.2)
M, =0 M, =0 M, =0

| (3-3)

In order to write the equations of equilibrium for a rigid body, we must first identify all of the
forces acting on that body and then draw the corresponding free-body diagram.
Free-Body Diagrams
In solving a problem concerning a rigid body in equilibrium, it is essential to consider all of the
forces acting on the body. It is equally important to exclude any force that is not directly applied
to the body. Omitting a force or adding an extraneous one would destroy the conditions of
equilibrium. Therefore, the first step in solving the problem is to draw a free-body diagram of
the rigid body under consideration.

We summarize here the steps vou must follow in drawing a correct free-body diagram.

1. Start with a clear decision regarding the choice of the free body to be analyzed. Mentally,
you need to detach this body from the ground and separate it from all other bodies. Then you
can sketch the contour of this isolated body.

2. Indicate all external forces on the free-body diagram. These forces represent the actions
exerted on the free body by the ground and by the bodies that have been detached. In the
diagram, apply these forces at the various points where the free body was supported by the
ground or was connected to the other bodies. Generally, you should include the weight of the
free body among the external forces, since it represents the attraction exerted by the earth on
the various particles forming the free body. If the free body is made of several parts, do not
include the forces the various parts exert on each other among the external forces. These forces

are internal forces as far as the free body is concerned.
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Fig. 3- 1A tractor supporting a bucket load. As shown, its free-body diagram should include

all external forces acting on the tractor.




Hm]_\

Boom reaction, vertical A\

Boom reaction, horizontal ) S |

Reactions ]\

Piston reaction

Boom weight Bucket load

lﬁlnl_\ weight Load

Fig. 3-2 Tractor bucket and boom. The internal forces associated with interconnected
members.

3. Clearly mark the magnitudes and directions of the known external forces on the free-body
diagram. Recall that when indicating the directions of these forces, the forces are those exerted
on, and not by, the free body. Known external forces generally include the weight of the free
body and forces applied for a given purpose.

4. Unknown external forces usually consist of the reactions through which the ground and other
bodies oppose a possible motion of the free body. The reactions constrain the free body to
remain in the same position; for that reason, they are sometimes called constraining forces.
Reactions are exerted at the points where the free body is supported by or connected to other
bodies; you should clearly indicate these points.

5. The free-body diagram should also include dimensions, since these may be needed for

computing moments of forces. Any other detail, however, should be omitted.

3-2 Equilibrium in Two Dimensions

3-2-1 Reactions for a Two-Dimensional Structure

The reactions exerted on a two-dimensional structure fall into three categories that correspond
to three types of supports or connections.

1. Reactions Equivalent to a Force with a Known Line of Action. Supports and connections
causing reactions of this type include rollers, rockers, frictionless surfaces, short links
and cables, collars on frictionless rods, and frictionless pins in slots. Each of these
supports and connections can prevent motion in one direction only. Figure 3.3 shows
these supports and connections together with the reactions they produce. Each reaction
involves one unknown—specifically, the magnitude of the reaction. In problem solving,

you should denote this magnitude by an appropriate letter. The line of action of the



reaction is known and should be indicated clearly in the free-body diagram. Assume that
single-track rollers and rockers are reversible, so the corresponding reactions can be
directed either way.

Reactions Equivalent to a Force of Unknown Direction and Magnitude. Supports and
connections causing reactions of this type include frictionless pins in fitted holes, hinges,
and rough surfaces. They can prevent translation of the free body in all directions, but
they cannot prevent the body from rotating about the connection. Reactions of this group
involve two unknowns and are usually represented by their x and y components. In the
case of a rough surface, the component normal to the surface must be directed away
from the surface.

Reactions Equivalent to a Force and a Couple. These reactions are caused by fixed
supports that oppose any motion of the free body and thus constrain it completely. Fixed
supports actually produce forces over the entire surface of contact; these forces,
however, form a system that can be reduced to a force and a couple. Reactions of this
group involve three unknowns usually consisting of the two components of the force

and the moment of the couple.
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Fig 3-3 Reactions of supports and connections in two dimensions.



Rigid-Body Equilibrium in Two Dimensions

The conditions stated for the equilibrium of a rigid body become considerably simpler for the
case of a two-dimensional structure. Choosing the x and y axes to be in the plane of the structure,
we have

F,=0 M,=M,=0 M, = M,

For each of the forces applied to the structure. Thus, the six equations of equilibrium reduce to
three equations:

SEF = N S =
2F, =0 ZF, =0 My =0 (3. 2)

Since 2M; = 0 must be satisfied regardless of the choice of the origin O,
we can write the equations of equilibrium for a two-dimensiénal structure

in the more general form

Equations of equilibrium in two dimensions

SF, = SF, = M, =
F,=0 F, =0 1, =0 (3.5)

Where A is any point in the plane of the structure. These three equations can be solved for no
more than three unknowns.

A correct free-body diagram is essential for the successful solution of a problem. Never proceed
with the solution of a problem until you are sure that your free-body diagram includes all loads,
all reactions, and the weight of the body (if appropriate).

1. You can write three equilibrium equations and solve them for three unknowns.

The three equations might be

You have just seen that unknown forces include reactions and that the number of unknowns
corresponding to a given reaction depends upon the type of support or connection causing that
reaction. Referring to Fig. 3.3, note that you can use the equilibrium equations (3.5) to determine
the reactions associated with two rollers and one cable, or one fixed support, or one roller and

one pin in a fitted hole, etc.

{ 1D
W
A A B
A J B A I
w.$

b)

\a)

Fig. 3-4 (a) A truss supported by a pin and a roller; (b) free-body diagram of the truss.



For a two-dimensional rigid body. the reactions at the supports can involve one,
two, or three unknowns, depending on the type of support (Fig. 4.1). A correct free-
body diagram is essential for the successful solution of a problem. Never proceed
with the solution of a problem until you are sure that your free-body diagram includes
all loads, all reactions, and the weight of the body (if appropriate).

I. You can write three equilibrium equations and solve them for three unknowns.
The three equations might be

2F, =0 2F, =0 My =0
However, usually several alternative sets of equations are possible, such as
IF,=0 M, =0 IMp=0

where point B is chosen in such a way that the line AB is not parallel to the y axis,
or

SM, =0 SMy =0 SMc= 0

where the points A, B, and C do not lic along a straight line.

2. To simplify your solution, it may be helpful to use one of the following solution
techniques.

a. By summing moments about the point of intepSe€tion of the lines of action
of two unknown forces, you obtain-an equation in a single unknown.

b. By summing components in a direction perpendicular to two unknown
parallel forces, you also obtain an equation_in a single unknown.

3. After drawing vour free-body diagram. you may find that one of the following
special situations arises.

a. The redetions involye fewer than three unknowns. The body is said to be
partially constrained and motion of the body is possible.

b. The reaction$ involvé more than three unknowns. The reactions are said to
be statically indeterminate. Although you may be able to calculate one or two reac-
tions, you cannot determine all of them.

¢. The reactions pass through a single point or are parallel. The body is
said to be improperly constrained and motion can occur under a general loading
condition.

EXAMPLE 3-1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate.
It 1s held in place by a pin at A and a rocker at B. The center of gravity
of the crane is located at G. Determine the components of the reactions
at A and B.
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STRATEGY: Draw a free-body diagram to show all of the forces acting
on the crane, then use the equilibrium equations to calculate the values of

the unknown forces.

MODELING:

Free-Body Diagram. By multiplying the masses of the crane and of
the crate by ¢ = 9.81 m/s’, you obtain the corresponding weights—that is,
9810 N or 9.81 kN, and 23 500 N or 23.5 kN (Fig. 1). The reaction at pin
A 1s a force of unknown direction; you can represent 1t by components A,
and A,. The reaction at the rocker B is perpendicular to the rocker surface:
thus, it is horizontal. Assume that A, A, and B act in the directions shown.
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Fig. 1 Free-body diagram of crane.



ANALYSIS:

Determination of B. The sum of the moments of all external forces
about point A is zero. The equation for this sum contains neither A, nor
A,, since the moments of A, and A, about A are zero. Multiplying the
magnitude of each force by its perpendicular distance from A, you have

+N\2ZM, = O: +B(1.5 m) — (9.81 kN)2 m) — (235 kN)(6 m) = 0
B = +107.1 kN B = 107.1 kN —

Since the result is positive, the reaction is directed as assumed.

Determination of A,. Determine the magnitude of A, by setting the
sum of the horizontal components of all external forces to.zero.
SIF, =0 A, +B=0

A, + 107.1 kN =0

A, = —107.1 kN A, = 1070 kN —

Since the result is negative, the sense of A; is opposite to that assumed
originally.
Determination of A, The sum of the vertical components must also
equal zero. Therefore,
+12F, = 0: A, — 981 KN — 235kN =0

A, = #333 kN A, =333kN1

Adding the components A, and A, vectorially, you can find that the
reaction at A is 112.2 kN 5.17.3°.

REFLECT and THINK: You can ¢heck the values obtained for the

reactions by recalling that the sum of the moments of all the external
forces about any point must be zero. For example, considering point B
(Fig. 2), you can show

+N2EMp = —(9.81 kKN)(2 m) — (23.5 kN)(6 m) + (107.1 kN)(1.5 m) = 0

@)
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Fig. 2 Free-body diagram of crane
with solved reactions.



EXAMPLE 3-2

Three loads are applied to a beam as shown. The beam is supported by a
roller at A and by a pin at B. Neglecting the weight of the beam, determine
the reactions at A and B when P = 15 kips.
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STRATEGY: Draw a free-body diagram of the beam, then write the

equilibrium equations, first summing forces in the x direction and then
summing moments at A and at B.

MODELING:

Free-Body Diagram. The reaction at A is vertical and-is denoted by

A (Fig. 1). Represent the reaction at B by components B, and B,. Assume
that each component acts in the direction shown.

*lé kips 6 kipsl lﬁ Kips
B lf—b B,
B,
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A
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3 ft 2ft 21t
Fig.1 Free-body diagram of beam.

ANALYSIS:

Equilibrium Equations. Write the three equilibrium equations and
solve for the reactions indicated:

LSF, = 0 B, =0 B, =0

+\IM, = O:
—(15 kips)(3 ft) + By(9 ft) — (6 kips)(11 ft) — (6 kips)(13 ft) = 0
B, = +21.0kips B, = 21.0 kips



+WSM3 = 0:
—A(9 ft) + (15 kips)(6 ft) — (6 kips)(2 ft) — (6 kips)(4 ft) = 0
A= +600kips A = 6.00 kips |

REFLECT and THINK: Check the results by adding the vertical com-

ponents of all of the external forces:
+13F, = +6.00 kips — 15 kips + 21.0 kips — 6 kips — 6 kips = 0

EXAMPLE 3-3

A loading car is at rest on a track forming an angle of 25° with the verti-
cal. The gross weight of the car and its load is 5500 Ib, and it acts at a
point 30 in. from the track, halfway between the two axles. The car is
held by a cable attached 24 in. from the track. Determisie the tension in
the cable and the reaction at each pair of wheels.

STRATEGY: Draw a free-body diagram of the car to determine the
unknown forees, and write equilibrium equations to find their values, sum-
ming moments at A and B and then summing forces.

MODELING:

Free-Body Diagram. The reaction at each wheel is perpendicular to
the track, and the tension force T is parallel to the track. Therefore, for
convenience, choose the x axis parallel to the track and the y axis perpen-
dicular to the track (Fig. 1). Then resolve the 5500-1b weight into x and
y components.

= +(5500 Ib) cos 25° = +4980 Ib

W,
W, = —(5500 Ib) sin 25° = —2320 Ib



Fig. 1 Free-body diagram of car.

ANALYSIS: ‘

Equilibrium Equations. Take moments about A to
from the computation.

+\ZM, = 0: —(2320 1b)(25 in.) — (49
R, = +1758 Ib

Then take moments about B to eliminate

+NEM, = O; (2320 1b)(25 in.) — (4980 Ib)

Determine the value by summing forces in the x direction.

Fig. 2 Free-body diagram
of car with solved reactions.



REFLECT and THINK: You can verify the computations by summing
forces in the y direction.

7+3F, = +5621b + 1758 Ib — 2320 1b = 0

You could also check the solution by computing moments about any point
other than A or B.

EXAMPLE 3-4

The frame shown supports part of the roof of a small building. Knowing
that the tension in the cable 1s 150 kN, determine the reaction at the
fixed end E.
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STRATEGY: Draw a freesbody diagram of the frame and of the cable
BDF. The support at E is fixed, so the reactions here include a moment;
to determine its value, sum moments about point E.

MODELING:

Free-Body Diagram.  Represent the reaction at the fixed end E by
the force components E; and E, and the couple My (Fig. 1). The other
forces acting on the free body are the four 20-kN loads and the 150-kN
force exerted at‘end F of the cable.

20 kN 20 kN 20 kN 20 kN
-
LSm18m 1.8m18m | .

E, bl — :
'“W 4.5m

|
E 150 kN

Fig. 1 Free-body diagram of frame.



ANALYSIS:

Equilibrium Equations. First note that

DF=V@45m)y +6m)’=75m

Then you can write the three equilibrium equations and solve for the
reactions at E.

4.5

S3F, = 0 E.+ 5 5(150kN) = 0
E, = —90.0 kN E, = 90.0 kN «—
6
+13F, = 0: E, = 4Q20kN) — —<(150kN) = 0
E, = +200 kN E, =200 kN 1

VM =0 (20 kN)(7.2 m) + (20 kN)(5.4 m) + (20 kN)(3.6 m)
+(20 kN)(1.8 m) — %{150 KNJ4.5 m) + My =0
My = +180.0 kN'-m / M, = 1800-kN-m %
EXAMPLE 3-5

A 400-1b weight is attached at A to the lever shown. The constant of the
spring BC is k = 250 Ib/in., and the spring is unstretched when 6 = 0.
Determine the position of equilibrium.

W=400 b —

STRATEGY: Draw a free-body diagram of the lever and cylinder to
show all forces acting on the body (Fig. 1), then sum moments about O.
Your final answer should be the angle 6.

MODELING:

Free-Body Diagram. Denote by s the deflection of the spring from
its unstretched position and note that s = rf. Then F = ks = krf.



ANALYSIS:

Equilibrium Equation. Sum the moments of W and F about O to
eliminate the reactions supporting the cylinder. The result is

kr2
+YEM,, = 0: Wi sin @ — r(krf) = 0 sin 6 = “'q 9
Substituting the given data yields
: (250 Ib/in.)(3 in.)*
sin 8 = (300 1b) (8 in) # sinf=0.703 6
Solving by trial and error, the angle is 0=0 6 = 80.3°

REFLECT and THINK: The weight could represent any vertical force
acting on the lever. The key to the problem is to express the spring force
as a function of the angle 6.
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Fig. 1 Free-body diagram of the lever
and cylinder.





