I.4 Double Integrals In Polar Coordinates

- 1. Evaluate $\iint_D y^2 + 3x \, dA$ where D is the region in the 3rd quadrant between $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.
- 2. Evaluate $\iint_D \sqrt{1 + 4x^2 + 4y^2} \, dA$ where D is the bottom half of $x^2 + y^2 = 16$.
- **3.** Evaluate $\iint_D 4xy 7 \, dA$ where D is the portion of $x^2 + y^2 = 2$ in the 1st quadrant.
- 4. Use a double integral to determine the area of the region that is inside $r = 4 + 2 \sin \theta$ and outside $r = 3 \sin \theta$.
 - 5. Evaluate the following integral by first converting to an integral in polar coordinates.
 - (a) $\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{0} e^{x^{2}+y^{2}} dy dx$ (b) $\int_{-2}^{0} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} dx dy$
 - 6. Use a double integral to determine the volume of the solid that is inside the cylinder $x^2 + y^2 = 16$, below $z = 2x^2 + 2y^2$ and above the xy-plane.
 - 7. Use a double integral to determine the volume of the solid that is bounded by $z = 8 x^2 y^2$ and $z = 3x^2 + 3y^2 4$.
 - 8. Find the area of the portion of the cone $x^2 + y^2 = 3z^2$ lying above the xy-plane and inside the cylinder $x^2 + y^2 = 4y$.
 - 9. Use a double integral to derive the area of a circle of radius a.
- 10. Use a double integral to derive the area of the region between circles of radius a and b with $\alpha \leq \theta \leq \beta$.

11. Consider the integral $\iint_D \frac{1}{\sqrt{x^2 + y^2}} dA$, where D is the unit disk centered at

the origin.

(a) Why might this integral be considered improper?

(b) Calculate the value of the integral of the same function $1/\sqrt{x^2 + y^2}$ over the annulus with outer radius 1 and inner radius δ .

(c) Obtain a value for the integral on the whole disk by letting δ approach 0.

(d) For which values λ can we replace the denominator with $(x^2 + y^2)^{\lambda}$ in the original integral and still get a finite value for the improper integral?

I.5 **Triple Integrals**

- 1. Evaluate $\int_{2}^{3} \int_{-1}^{4} \int_{1}^{0} 4x^{2}y z^{3} dz dy dx.$
- Evaluate $\int_0^1 \int_0^{z^2} \int_0^3 y \cos(z^5) dx dy dz$ 2.
- Evaluate $\iiint_{E} 6z^2 dV$ where E is the region below 4x + y + 2z = 10 in the first 3. octant.
- octant. **4.** Evaluate $\iiint 3 4x \, dV$ where E is the region below z = 4 xy and above the region in the xy-plane defined by $0 \le x \le 2, 0 \le y \le 1$.
- Evaluate $\iiint 12y 8x \, dV$ where E is the region behind y = 10 2z and in 5. front of the region in the xz-plane bounded by z = 2x, z = 5 and x = 0.
- Evaluate $\iiint yz \, dV$ where E is the region bounded by $x = 2y^2 + 2z^2 5$ and the plane x = 1.
- 7. Evaluate $\iiint_E 15z \, dV$ where E is the region between 2x + y + z = 4 and 4x + 4y + 2z = 20 that is in front of the region in the yz-plane bounded by $z = 2y^2$ and $z = \sqrt{4y}$.
- 8. Use a triple integral to determine the volume of the region below z = 4 - xyand above the region in the xy-plane defined by $0 \le x \le 2$ $0 \le y \le 1$.
- Use a triple integral to determine the volume of the region that is below z = $8 - x^2 - y^2$ above $z = -\sqrt{4x^2 + 4y^2}$ and inside $x^2 + y^2 = 4$.
- Express the triple integral $\int \int dx dy dz$ in terms of iterated integrals in six 10. different ways. The region E lies in the first octant and is bounded by the cylinder $x^2 + z^2 = 4$ and the plane y = 3. Find the value of the integral.