جابعة، ديباط Damietta University								
	PROGRAM/ YEAR	PREPARATORY YEAR (2019-2020)	SEMESTER	FIRST	FACULTY OF ENGINEERING DAMIETTA UNIVERSITY الية الهندسة-مامعة دميا			
	COURSE TITLE:	Mathematics (1)	CODE : MPH101	SHEET (1)				
	Systems of Linear Equations							
1 - Determine which equations are linear equations in the variables x, y, and z. If any equation is not linear, explain why not.								
	(a)	$x - \pi y + \sqrt[3]{5z} = 0$						
	(b	$) x^{-1} + 7y + z = \sin(\frac{\pi}{9})$						
(c) $\cos x - 4y + z = \sqrt{3}$								
2 - Find a linear equation that has the same solution set as the given equation (possibly with some restrictions on the variables).								
(a) $2x + y = 7 - 3y$ (b) $\frac{1}{x} + \frac{1}{y} = \frac{4}{xy}$								
$\overline{3}$ - Find the	e solution set of	each equation.						
(a) $3x - 6y = 0$								
	(b	b) $x + 2y + 3z = 4$						
4 - Draw g	raphs correspor	nding to the given linear	systems. Det	ermine g	eometrically			
whether each system has a unique solution, infinitely many solutions, or no solution. Then solve each system algebraically to confirm your answer.								
(a) $x + y = 0$								
2x + y = 3 (b) $3x - 6y = 3$								
	(U	-x + 2y = 1						
5 - Solve th	ne given system	by back substitution.						
(a) $x - 2y = 1$								
y = 3								
(b) $x - y + z = 0$ 2y - z = 1								
3z = -1								

pg. 1

6 - Solve the given system.

x = 2 2x + y = -3-3x - 4y + z = -10

7 - Find the augmented matrices of the linear systems.

(a)
$$x - y = 0$$

 $2x + y = 3$
(b) $2x_1 + 3x_2 - x_3 = 1$
 $x_1 + x_3 = 0$
 $-x_1 + 2x_2 - 2x_3 = 0$

8 - Find a system of linear equations that has the given matrix as its augmented matrix.

$$\begin{bmatrix} 0 & 1 & 1 & | & 1 \\ 1 & -1 & 0 & | & 1 \\ 2 & -1 & 1 & | & 1 \end{bmatrix}$$

- 9 (a) Find a system of two linear equations in the variables x and y whose solution set is given by the parametric equations x = t and y = 3 2t.
- (b) Find another parametric solution to the system in part (a) in which the parameter is s and y = s.
- 10 The system of equations are nonlinear. Find substitutions (changes of variables) that convert each system into a linear system and use this linear system to help solve the given system.

$$\frac{2}{x} + \frac{3}{y} = 0$$
$$\frac{3}{x} + \frac{4}{y} = 1$$

11 - Determine whether the given matrix is in row echelon form. If it is, state whether it is also in reduced row echelon form.

$$(a) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 3 \\ 0 & 1 & 0 \end{bmatrix}$$

(b) $\begin{bmatrix} 7 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 1 & 0 \\ -1 & 4 \\ 0 & 0 \end{bmatrix} $	$(c) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
12 - Use elementary row operation (a) row echelon form and Matrix (1) = $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	ns to reduce the give (b) reduced row ech 0 1 1 1 1 1	n matrices to: elon form.
[3	-2 -1]	

13 - In general, what is the elementary row operation that" undoes" each of the three elementary row operations.

$$R_i \leftrightarrow R_j, kR_i, \text{ and } R_i + kR_j?$$

Matrix (2) = $\begin{bmatrix} 2 & -1 & -1 \\ 4 & -3 & -1 \end{bmatrix}$

14 - Show that the given matrices are row equivalent and find a sequence of elementary row operations that will convert A into B.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$B = \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}$$

15 - What is the net effect of performing the following sequence of elementary row operations on a matrix (with at least two rows)?

$$R_2 + R_1$$
, $R_1 - R_2$, $R_2 + R_1$, $- R_1$

16 - Students frequently perform the following type of calculation to introduce a zero into a matrix :

3	1	$3R_2 - 2R_1$	3	1
2	4		0	10

However, $3R_2 - 2R_1$ is not an elementary row operation. Why not? Show how to achieve the same result using elementary row operations.

17 - Solve the given system of equations using either Gaussian or Gauss-Jordan elimination.

(a)
$$x_1 + 2x_2 - 3x_3 = 9$$
 (b) $w + x + 2y + z = 1$

pg. 3

- $2x_1 x_2 + x_3 = 0 w x y + z = 0$ $4x_1 - x_2 + x_3 = 4 x + y = -1$ w + x + z = 2
- 18 Determine by inspection whether a linear system with the given augmented matrix has a unique solution, infinitely many solutions, or no solution. Justify your answers.

(a) $\begin{bmatrix} 0 & 0 & 1 & | & 2 \\ 0 & 1 & 3 & | & 1 \\ 1 & 0 & 1 & | & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & | & 6 \\ 6 & 5 & 4 & 3 & 2 & | & 1 \\ 7 & 7 & 7 & 7 & 7 & | & 7 \end{bmatrix}$

19 - For what value(s) of k, if any, will the systems have (a) no solution, (b) a unique solution, and (c) infinitely many solutions?

(a)
$$x + ky = 1$$

 $kx + y = 1$
(b) $x + y + kz = 1$
 $x + ky + z = 1$
 $kx + y + z = -2$

20 - Find the line of intersection of the given planes. 3x + 2y + z = -1 and 2x - y + 4z = 5

21 - (a) Give an example of three planes that have a common line of intersection

