- 10
- **26.** Evaluate $\iiint_E 3z \, dV$ where E is the region below $x^2 + y^2 + z^2 = 1$ and inside $z = \sqrt{x^2 + y^2}$.
- **27.** Evaluate $\iiint_E x^2 dV$ where E is the region above $x^2 + y^2 + z^2 = 36$ and inside $z = -\sqrt{3x^2 + 3y^2}$.
- 28. Evaluate the following integrals by first converting to an integral in spherical coordinates.

(a)
$$\int_{-1}^{0} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{6x^2+6y^2}}^{\sqrt{7-x^2-y^2}} 18y \ dz \, dy \, dx$$

(b)
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$$

- **29.** Find the centroid of a homogeneous half-ball of radius R.
- **30.** Find the mass of a ball of radius R whose density σ is proportional to the squared distance from the center.
- 31. An object occupies the region in the first octant bounded by the cones $\varphi = \pi/4$ and $\varphi = \pi/3$, and the sphere $\rho = \sqrt{6}$, and has density proportional to the distance from the origin. Find the mass.

I.7 Change of Variables

1. Compute the Jacobian of each transformation.

(a)
$$x = 4u - 3v^2$$
 $y = u^2 - 6v$.

(b)
$$x = u^2 v^3$$
 $y = 4 - 2\sqrt{u}$.

(c)
$$x = \frac{v}{u}$$
 $y = u^2 - 4v^2$.

- **2.** If R is the region inside $\frac{x^2}{4} + \frac{y^2}{36} = 1$ determine the region we would get applying the transformation x = 2u, y = 6v to R.
- **3.** If R is the parallelogram with vertices (1,0),(4,3),(1,6) and (-2,3) determine the region we would get applying the transformation $x = \frac{1}{2}(v-u), y = \frac{1}{2}(v+u)$ to R.
- **4.** If R is the region bounded by xy=1, xy=3, y=2 and y=6 determine the region we would get applying the transformation $x=\frac{v}{6u}, \ y=2u$ to R.

I.7. CHANGE OF VARIABLES

- 11
- **5.** Evaluate $\iint_R xy^3 dA$ where R is the region bounded by xy = 1, xy = 3, y = 2 and y = 6 using the transformation $x = \frac{v}{6u}, y = 2u$.
- **6.** Evaluate $\iint_R 6x 3y \, dA$ where R is the parallelogram with vertices (2,0), (5,3), (6,7) and (3,4) using the transformation $x = \frac{1}{3}(v-u), y = \frac{1}{3}(4v-u)$ to R.
- 7. Evaluate $\iint_R x + 2y \, dA$ where R is the triangle with vertices (0,3), (4,1) and (2,6) using the transformation $x = \frac{1}{2} (u-v), y = \frac{1}{4} (3u+v+12)$ to R.
- **8.** Derive the transformation used in problem 8.
- **9.** Derive a transformation that will convert the triangle with vertices (1,0), (6,0) and (3,8) into a right triangle with the right angle occurring at the origin of the uv system.
- **10.** Evaluate $\iint xy \, dx \, dy$ over the square with corners (0,0),(1,1),(2,0), and (1,-1) in two ways: directly, and using x=(u+v)/2,y=(u-v)/2.
- 11. Evaluate $\iint \sin(9x^2 + 4y^2) dA$, over the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$.
- 12. Evaluate $\iiint_E dV$ where E is the solid enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$