Chapter 2

Line Integrals

II.1 Line Integrals of Scalar Functions - I

For problems 1–7 evaluate the given line integral. Follow the direction of C as given in the problem statement.

- 1. Evaluate $\int_C 3x^2 2y \, ds$ where C is the line segment from (3,6) to (1,-1).
- **2.** Evaluate $\int_{C}^{C} 2yx^2 4x \, ds$ where C is the lower half of the circle centered at the origin of radius 3 with clockwise rotation.
- **3.** Evaluate $\int_C 6x \, ds$ where C is the portion of $y = x^2$ from x = -1 to x = 2. The direction of C is in the direction of increasing x.
- **4.** Evaluate $\int_C xy 4z \, ds$ where C is the line segment from (1,1,0) to (2,3,-2).
- **5.** Evaluate $\int_C x^2 y^2 ds$ where C is the circle centered at the origin of radius 2 centered on the y-axis at y = 4. See the sketches below (Figure 2.1) for orientation.
- **6.** Evaluate $\int_C 16y^5 ds$ where C is the portion of $x = y^4$ from y = 0 to y = 1 followed by the line segment form (1,1) to (1,-2) which in turn is followed by the line segment from (1,-2) to (2,0).
- 7. Evaluate $\int_C 4y x \, ds$ where C is the upper portion of the circle centered at

Figure 2.1

the origin of radius 3 from $\left(\frac{3}{\sqrt{2}},\frac{3}{\sqrt{2}}\right)$ to $\left(-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)$ in the counter clockwise rotation followed by the line segment form $\left(-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)$ to $\left(4,-\frac{3}{\sqrt{2}}\right)$ which in turn is followed by the line segment from $\left(4,-\frac{3}{\sqrt{2}}\right)$ to (4,4).

- **8.** Evaluate $\int_C y^3 x^2 ds$ for each of the following curves.
 - (a) C is the line segment from (3,6) to (0,0) followed by the line segment from (0,0) to (3,-6).
 - (b) C is the line segment from (3,6) to (3,-6).
- 9. Evaluate $\int_C 4x^2 ds$ for each of the following curves.
 - (a) C is the portion of the circle centered at the origin of radius 2 in the 1^{st} quadrant rotating in the clockwise direction.
 - (b) C is the line segment from (0,2) to (2,0).
- 10. Evaluate $\int_C 2x^3 ds$ for each of the following curves.
 - (a) C is the portion $y = x^3$ from x = -1 to x = 2.
 - (b) C is the portion $y = x^3$ from x = 2 to x = -1.

II.2 Line Integrals of Scalar Functions - II

For problems 1–5 evaluate the given line integral. Follow the direction of C as given in the problem statement.

II.3. LINE INTEGRALS OF VECTOR FIELDS

- 15
- 1. Evaluate $\int_C \sqrt{1+y} \, dy$ where C is the portion of $y=e^2x$ from x=0 to x=2.
- 2. Evaluate $\int_C 2y \, dx + (1-x) \, dy$ where C is portion of $y = 1-x^3$ from x = -1 to x = 2.

 3. Evaluate $\int_C x^2 \, dy yz \, dz$ where C is the line segment from (4, -1, 2) to (1, 7, -1).
- Evaluate $\int_{C} 1 + x^3 dx$ where C is the right half of the circle of radius 2 with counter clockwise rotation followed by the line segment from (0,2) to (-3,-4).
- Evaluate $\int_C 2x^2 dy xy dx$ where C is the line segment from (1, -5) to (-2, -3)followed by the portion of $y=1-x^2$ from x=-2 to x=2 which in turn is followed by the line segment from (2, -3) to (4, -3).
- Evaluate $\int_{-\infty}^{\infty} (x-y) dx yx^2 dy$ for each of the following curves.
 - (a) C is the portion of the circle of radius 6 in the $1^{st}, 2^{nd}$ and 3^{rd} quadrant with clockwise rotation.
 - (b) C is the line segment from (0, -6) to (6, 0).
- Evaluate $\int x^3 dy (y+1) dx$ for each of the following curves.
 - (a) C is the line segment from (1,7) to (-2,4).
 - (b) C is the line segment from (-2,4) to (1,7).

II.3 Line Integrals of Vector Fields

- 1. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = y^2 \vec{i} + (3x 6y) \vec{j}$ and C is the line segment from (3,7) to (0,12).
- **2.** Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = (x+y)\vec{i} + (1-x)\vec{j}$ and C is the portion of $\frac{x^2}{4} + \frac{y^2}{9} = 1$ that is in the 4th quadrant with the counter clockwise rotation.

- **3.** Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = y^2 \vec{i} + (x^2 4) \vec{j}$ and C is the portion of $y = (x-1)^2$ from x = 0 to x = 3.
- **4.** Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y, z) = e^{2x} \vec{i} + z (y + 1) \vec{j} + z^{3} \vec{k}$ and C is given by $\vec{r}(t) = t^{3} \vec{i} + (1 3t) \vec{j} + e^{t} \vec{k}$ for $0 \le t \le 2$.
- **5.** Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = 3y\vec{i} + (x^2 y)\vec{j}$ and C is the upper half of the circle centered at the origin of radius 1 with counter clockwise rotation and the portion of $y = x^2 1$ from x = -1 to x = 1.
- **6.** Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = xy\vec{i} + (1+3y)\vec{j}$ and C is the line segment from (0,-4) to (-2,-4) followed by portion of $y=-x^2$ from x=-2 to x=2 which is in turn followed by the line segment from (2,-4) to (5,1).
- 7. Evaluate $\int\limits_C \vec{F} \cdot d\vec{r}$ where $\vec{F}\left(x,y\right)=\left(6x-2y\right)\,\vec{i}+x^2\vec{j}$ for each of the following curves.
- (a) C is the line segment from (6, -3) to (0, 0) followed by the line segment from (0, 0) to (6, 3).
- (b) C is the line segment from (6, -3) to (6, 3).
- **8.** Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = 3\vec{i} + (xy 2x)\vec{j}$ for each of the following curves.
 - (a) C is the upper half of the circle centered at the origin of radius 4 with counter clockwise rotation.
 - (b) C is the upper half of the circle centered at the origin of radius 4 with clockwise rotation
- **9.** An object moves from (1,1,1) to (2,4,8) along the path $\vec{r}(t) = \langle t, t^2, t^3 \rangle$, subject to the force $\vec{F} = \langle \sin x, \sin y, \sin z \rangle$. Find the work done.