
Lecture 2

Compound Stresses

1- Generalized Hooke’s law

Generalized Hooke’s law is an extension of the simple stress–strain relations of Equation (1.5)

to a general case where stresses and strains are three-dimensional.

Consider a cube subjected to normal stresses, σx , σy and σz , in the directions of x, y, and z 
coordinate axes, respectively (Figure 1.11(a)).

From Figure 1.11, we have

Strain of Case (a) = strain of Case (b) + strain of Case (c) + strain of Case (d)

In particular, considering the normal strain of Case (a) in the x direction and applying

Equation (1.5) and Equation (1.7) to Cases (b), (c) and (d), we have

Figure 1.11





Fig. 1. 12 (a) General three-dimensional stress. (b) Plane stress with “cross-shears”
equal.

2- Mohr’s Circle for Plane Stress

Suppose the dx dy dz element of Fig.1.12b is cut by an oblique plane with a normal n at an
arbitrary angle φ counterclockwise from the x axis as shown in Fig. 1. 13. This section is
concerned with the stresses σ and τ that act upon this oblique plane. By summing the forces 
caused by all the stress components to zero, the stresses σ and τ are found to be 
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Equations (9) and (10) are called the plane-stress transformation equations. Differentiating
Eq. (9) with respect to φ and setting the result equal to zero gives

yx

xy

P








2
2tan

(1-11)

Fig. 1. 13

Equation (11) defines two particular values for the angle 2φp, one of which defines the

maximum normal stress σ1 and the other, the minimum normal stress σ2. These two stresses
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are called the principal stresses, and their corresponding directions, the principal directions.
The angle between the principal directions is 90°. It is important to note that Eq. (11) can be
written in the form
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Comparing this with Eq. (10), we see that τ = 0, meaning that the surfaces containing
principal stresses have zero shear stresses.

In a similar manner, we differentiate Eq. (10), set the result equal to zero, and obtain
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Equation (13) defines the two values of 2φs at which the shear stress τ reaches an extreme

value. The angle between the surfaces containing the maximum shear stresses is 90°. Equation
(13) can also be written as
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Substituting this into Eq. (9) yields
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Equation (14) tells us that the two surfaces containing the maximum shear stresses also

contain equal normal stresses of (σx + σy)/2.

Comparing Eqs. (12) and (13), we see that tan 2φs is the negative reciprocal of tan 2φp. This

means that 2φs and 2φp are angles 90° apart, and thus the angles between the surfaces

containing the maximum shear stresses and the surfaces containing the principal stresses are

±45◦.

Formulas for the two principal stresses can be obtained by substituting the angle 2φp from

Eq. (12) in Eq. (10). The result is :
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In a similar manner the two extreme-value shear stresses are found to be :
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It is important to note that the equations given to this point are quite sufficient for performing
any plane stress transformation. However, extreme care must be exercised when applying
them.

For example, say you are attempting to determine the principal state of stress for a problem

where σx = 14 MPa, σy = −10 MPa, and τxy = −16 MPa. 

Equation (12) yields φp = −26.57◦ and 63.43° to locate the principal stress surfaces, whereas, 
Eq. (15) gives σ1 = 22 MPa and σ2 = −18 MPa for the principal stresses. 

If all we wanted was the principal stresses, we would be finished. However, what if we wanted
to draw the element containing the principal stresses properly oriented relative to the x, y
axes? Well, we have two values of φp and two values for the principal stresses. How do we

know which value of φp corresponds to which value of the principal stress? To clear this up
we would need to substitute one of the values of φp into Eq. (10) to determine the normal

stress corresponding to that angle.

A graphical method for expressing the relations developed in this section, called Mohr’s circle
diagram, is a very effective means of visualizing the stress state at a point and keeping track
of the directions of the various components associated with plane stress. Equations (10) and
(11) can be shown to be a set of parametric equations for σ and τ , where the parameter is 2φ. 

The relationship between σ and τ is that of a circle plotted in the σ, τ plane, where the center 
of the circle is located at

C = (σ, τ ) = [(σx + σy)/2, 0]

and has a radius of
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A problem arises in the sign of the shear stress. The transformation equations are based on a
positive φ being counterclockwise, as shown in Fig. 1. 13. If a positive τ were plotted above 
the σ axis, points would rotate clockwise on the circle 2φ in the opposite direction of rotation 
on the element. It would be convenient if the rotations were in the same direction. One could
solve the problem easily by plotting positive τ below the axis. However, the classical approach 
to Mohr’s circle uses a different convention for the shear stress.

Mohr’s Circle Shear Convention

This convention is followed in drawing Mohr’s circle:

 Shear stresses tending to rotate the element clockwise (cw) are plotted above the σ 
axis.

 Shear stresses tending to rotate the element counterclockwise (ccw) are plotted below

the σ axis. 

For example, consider the right face of the element in Fig. 2. 12b. By Mohr’s circle convention
the shear stress shown is plotted below the σ axis because it tends to rotate the element 



counterclockwise. The shear stress on the top face of the element is plotted above the σ axis 
because it tends to rotate the element clockwise.

In Fig. 1.14 we create a coordinate system with normal stresses plotted along the abscissa
and shear stresses plotted as the ordinates. On the abscissa, tensile (positive) normal stresses

are plotted to the right of the origin O and compressive (negative) normal stresses to the left.
On the ordinate, clockwise (cw) shear stresses are plotted up; counterclockwise (ccw) shear

stresses are plotted down.

Fig. 1. 14 Mohr’s circle diagram.

Using the stress state of Fig. 1. 12b, we plot Mohr’s circle, Fig. 1. 14, by first looking at the
right surface of the element containing σx to establish the sign of σx and the cw or ccw
direction of the shear stress. The right face is called the x face where φ = 0◦. If σx is positive
and the shear stress τxy is ccw as shown in Fig. 1. 12b, we can establish point A with

coordinates (σx ,
ccw
xy

) in Fig. 1. 14. Next, we look at the top y face, where φ = 90◦, which 

contains σy , and repeat the process to obtain point B with coordinates (σy ,
cw
xy

) as shown in
Fig. 2. 9. The two states of stress for the element are ∆φ = 90◦ from each other on the element 

so they will be 2∆φ = 180◦ from each other on Mohr’s circle. Points A and B are the same
vertical distance from the σ axis. 

Thus, AB must be on the diameter of the circle, and the center of the circle C is where AB

intersects the σ axis. With points A and B on the circle, and center C, the complete circle can
then be drawn. Note that the extended ends of line AB are labeled x and y as references to the

normals to the surfaces for which points A and B represent the stresses.



The entire Mohr’s circle represents the state of stress at a single point in a structure. Each
point on the circle represents the stress state for a specific surface intersecting the point in the
structure. Each pair of points on the circle 180° apart represent the state of stress on an element

whose surfaces are 90° apart. Once the circle is drawn, the states of stress can be visualized
for various surfaces intersecting the point being analyzed.

For example, the principal stresses σ1 and σ2 are points D and E, respectively, and their values

obviously agree with Eq. (15). We also see that the shear stresses are zero on the surfaces
containing σ1 and σ2. The two extreme-value shear stresses, one clockwise and one

counterclockwise, occur at F and G with magnitudes equal to the radius of the circle. The
surfaces at F and G each also contain normal stresses of (σx + σy)/2 as noted earlier in Eq.

(15). Finally, the state of stress on an arbitrary surface located at an angle φ counterclockwise 
from the x face is point H.

At one time, Mohr’s circle was used graphically where it was drawn to scale very accurately
and values were measured by using a scale and protractor. Here, we are strictly using Mohr’s

circle as a visualization aid and will use a semi graphical approach, calculating values from
the properties of the circle. This is illustrated by the following example.

EXAMPLE 1

A stress element has σx = 80 MPa and τxy = 50 MPa cw, as shown in Fig. 1. 15a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these on a stress
element correctly aligned with respect to the xy coordinates. Draw another stress element to

show τ1 and τ2, find the corresponding normal stresses, and label the drawing completely.

Solution

In the semi graphical approach used here, we first make an approximate freehand sketch of
Mohr’s circle and then use the geometry of the figure to obtain the desired information.

Draw the σ and τ axes first (Fig. 1. 15b) and from the x face locate σx = 80 MPa along the σ 

axis. On the x face of the element, we see that the shear stress is 50 MPa in the cw direction.
Thus, for the x face, this establishes point A (80, 50cw) MPa. Corresponding to the y face, the
stress is σ = 0 and τ = 50 MPa in the ccw direction.  

This locates point B (0, 50ccw) MPa. The line AB forms the diameter of the required circle,
which can now be drawn. The intersection of the circle with the σ axis defines σ1 and σ2 as
shown. Now, noting the triangle ACD, indicate on the sketch the length of the legs AD and
CD as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

MPa0.64)40()50( 22
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and this should be labeled on the sketch too. Since intersection C is 40 MPa from the origin,
the principal stresses are now found to be

σ1 = 40 + 64 = 104 MPa and σ2 = 40 − 64 = −24 MPa

The angle 2φ from the x axis cw to σ1 is
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To draw the principal stress element (Fig. 1. 15c), sketch the x and y axes parallel to the

original axes. The angle φp on the stress element must be measured in the same direction as
is the angle 2φp on the Mohr circle. Thus, from x measure 25.7° (half of 51.3°) clockwise to

locate the σ1 axis. The σ2 axis is 90° from the σ1 axis and the stress element can now be
completed and labeled as shown. Note that there are no shear stresses on this element.

The two maximum shear stresses occur at points E and F in Fig. 1. 15b. The two normal

stresses corresponding to these shear stresses are each 40 MPa, as indicated.

Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 1. 15d, draw a stress
element oriented 19.3° (half of 38.7°) ccw from x. The element should then be labeled with
magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y directions of the
original reference system. This completes the link between the original machine element and
the orientation of its principal stresses.

Fig. 1. 15 All stresses in MPa.




