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Introduction



Introduction

Ideally, an electricity supply should invariably show a perfectly

sinusoidal voltage signal at every customer location.
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How can a sine wave correctly drawn  ???



Introduction

Utilities often find it hard to preserve such desirable conditions.
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Basics of Harmonic Theory



Basics of Harmonic Theory

The term “harmonics” was originated in the field of acoustics, where it

was related to the vibration of a string or an air column at a frequency

that is a multiple of the base frequency.

A harmonic component in an AC power system is defined as:-

a sinusoidal component of a periodic waveform that has a frequency

equal to an integer multiple of the fundamental frequency of the system.

Harmonics in voltage or current is a sine wave of frequencies multiple

of the fundamental frequency:

fh=(h) x (fundamental frequency)



Basics of Harmonic Theory

Harmonics in voltage or current is a sine wave of frequencies multiple

of the fundamental frequency:

fh=(h) x (fundamental frequency)
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Basics of Harmonic Theory

These waveforms can be expressed as:

i1 =Im1 sin(ωt) i3 =Im3 sin(3ωt−δ3)

i5 =Im5 sin(5ωt−δ5) i7 =Im7 sin(7ωt−δ7)

where Imh is the peak RMS value of the harmonic current h.



Basics of Harmonic Theory

This figure shows the same harmonic waveforms as those in previous

figure superimposed on the fundamental frequency current yielding
Itotal.



0 2 4 6 8 10 12 14 16 18 20

-100

-50

0

50

100

Time (mS)

V
o

lt
a

g
e

 v
1

, 
v
2

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

Time (mS)

T
o

ta
l 
s
u

p
p

li
e

d
 v

o
lt
a

g
e

Basics of Harmonic Theory



Linear and Nonlinear Loads



Linear Loads

Linear loads are those in which voltage and current signals follow one

another very closely, such as the voltage drop that develops across a

constant resistance, which varies as a direct function of the current that

passes through it.

This relation is better known as Ohm’s law and states that the current

through a resistance fed by a varying voltage source is equal to the

relation between the voltage and the resistance, as described by:

𝑖 𝑡 =
 𝑣(𝑡

𝑅



Linear Loads

This is why the voltage and current waveforms in electrical circuits with

linear loads look alike. Therefore, if the source is a clean open circuit

voltage, the current waveform will look identical, showing no distortion.



Linear Loads

Figure 5.4 Relation among voltage, current, and power in a 

purely resistive circuit.



Linear Loads

Figure 5.5 Relation among voltage, current, and power in a 

purely inductive circuit.



Linear Loads

Figure 5.6 Relation among voltage, current, and power in a 

purely capacitive circuit.



Nonlinear Loads

Nonlinear loads are loads in which the current waveform does not

resemble the applied voltage waveform due to a number of reasons, for

example, the use of electronic switches that conduct load current only

during a fraction of the power frequency period.

We can conceive nonlinear loads as those in which Ohm’s law cannot

describe the relation between V and I.



Nonlinear Loads



Nonlinear Loads

Voltage and current waveforms during the switching action of an 
insulated gate bipolar transistor (IGBT).



Nonlinear Loads

Is the transformer a linear or non linear element ?????

Even linear loads like power transformers can act nonlinear under saturation conditions.

What this means is that, in certain instances, the magnetic flux density (B) in the

transformer ceases to increase or increases very little as the magnetic flux intensity (H)

keeps growing. This occurs beyond the so-called saturation knee of the magnetizing

curve of the transformer.



Nonlinear Loads

Note that the normal operation of power transformers should be below

the saturation region.

However, when the transformer is operated beyond its rated power

(during peak demand hours) or above nominal voltage (especially if

power factor capacitor banks are left connected to the line under light

load conditions), transformers are prone to operate under saturation.



Nonlinear Loads

Practically speaking, all transformers reach the saturation region on

energization, developing large inrush (magnetizing) currents.

Nevertheless, this is a condition that lasts only a few cycles. Another

situation in which the power transformer may operate on the saturation

region is under unbalanced load conditions; one of the phases carries a

different current than the other phases, or the three phases carry unlike

currents.



Effects of Harmonics on Distribution 

Systems



Effects of Harmonics on Distribution Systems

Is the harmonics useful or not for electric power systems ????

 Thermal Effects on Transformers

 Neutral Conductor Overloading

 Effects on Capacitor Banks

 Unexpected Fuse Operation

 Abnormal Operation of Electronic Relays

 Thermal Effects on Rotating Machines

Each will be discussed later



Harmonic Analyses



Harmonic Analyses

A function f(t) is said to be periodic if f(t+T) = f(t) for all values of t,

where T is the interval between two successive repetitions and is called

the period of the function f(t).

Figure 5.10 Typical complex periodic voltage waveform



The General Equation for a Complex Waveform

v =V1m sin(ωt+ψ1) + V2m sin(2ωt+ψ2) + ……. + Vnm sin(nωt+ψn)

V1m sin(ωt+ψ1) represents the fundamental component of which V1m is the

maximum or peak value, frequency, f =ω/2π and ψ1 is the phase angle with respect
to time, t = 0.

Similarly, V2m sin(2ωt+ψ2) represents the second harmonic component, and Vnm

sin(nωt+ψn) represents the nth harmonic component, of which Vnm is the peak
value, frequency = nω/2π (= nf) and ψn is the phase angle.



The General Equation for a Complex Waveform
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Harmonic Synthesis

Example 5–1

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

va =100 sin(ωt) + 30 sin(3ωt)  volts 



Harmonic Synthesis

Example 5–1

va =100 sin(ωt) + 30 sin(3ωt)  volts 

At time T/12 seconds, the fundamental has a value of 50 V and the third harmonic a

value of 30 V. Adding gives 80 V for waveform va., similarly T/8, T/4, T/2,…….

Solution

The shapes of the negative and positive half-cycles are identical.



Harmonic Synthesis

Example 5–2

Consider the addition of a fifth harmonic component to the complex

waveform of Figure 5.11, giving a resultant waveform expression, draw

and analyze.

vb =100 sin(ωt) + 30 sin(3ωt) + 20 sin(5ωt)   volts



Harmonic Synthesis

Example 5–2

vb =100 sin(ωt) + 30 sin(3ωt) + 20 sin(5ωt)
Solution



Harmonic Synthesis

Example 5–2

vb =100 sin(ωt) + 30 sin(3ωt) + 20 sin(5ωt)
Solution

The shapes of the negative and positive half-cycles are identical.



Harmonic Synthesis

Example 5–3

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

vc=100 sin(ωt) + 30 sin(3ωt+π/2) volts



Harmonic Synthesis

Example 5–3

vc=100 sin(ωt) + 30 sin(3ωt+π/2) volts
Solution

The third harmonic has a

phase displacement of π/2

radian leading (i.e., leading
30 sin 3ωt by π/2 radian).

The shapes of the negative and positive half-cycles are identical.



Harmonic Synthesis

Example 5–4

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

vd=100 sin(ωt) + 30 sin(3ωt − π/2) volts



Harmonic Synthesis

Example 5–4

vd=100 sin(ωt) + 30 sin(3ωt − π/2) volts
Solution

The shapes of the negative and positive half-cycles are identical.



Harmonic Synthesis

Example 5–5

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

ve=100 sin(ωt) + 30 sin(3ωt + π) volts



Harmonic Synthesis

Example 5–5

ve=100 sin(ωt) + 30 sin(3ωt + π) volts
Solution

The shapes of the negative and positive half-cycles are identical.



Harmonic Synthesis

Example 5–6

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

vf=100 sin(ωt) − 30 sin(3ωt + π/2)  volts



Harmonic Synthesis

Example 5–6

vf=100 sin(ωt) − 30 sin(3ωt + π/2)  volts

vf = 100 sin(ωt) − 30 sin(3ωt + π/2) 

= 100 sin(ωt) + 30 sin(3ωt − π/2)

Solution

Similar to example 5-4



Harmonic Synthesis

General conclusions on examples 6.1 to 6.6

Whenever odd harmonics are added to a fundamental waveform, whether

initially in phase with each other or not, the positive and negative half

cycles of the resultant complex wave are identical in shape.
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Harmonic Synthesis

General conclusions on examples 6.1 to 6.6

Whenever odd harmonics are added to a fundamental waveform, whether

initially in phase with each other or not, the positive and negative half

cycles of the resultant complex wave are identical in shape.



Harmonic Synthesis

General conclusions on examples 6.1 to 6.6

When both the positive and negative half cycles of a

waveform have identical shapes, the Fourier series contains

only odd harmonics.



Harmonic Synthesis

Example 5–7

Consider the complex current expression given by the following complex

wave, draw and analyze.

ia = 10 sin(ωt) + 4 sin(2ωt)  amperes



Harmonic Synthesis

Example 5–7

ia = 10 sin(ωt) + 4 sin(2ωt)  amperes

Solution

If all the values in the negative half cycle were reversed then this half-cycle would

appear as a mirror image of the positive half-cycle about a vertical line drawn at t = T/2.



Harmonic Synthesis

Example 5–8

Consider the complex current expression given by the following complex

wave, draw and analyze.

ib = 10 sin(ωt) + 4 sin(2ωt)  + 3 sin(4ωt)     amperes



Harmonic Synthesis

Example 5–8

ib = 10 sin(ωt) + 4 sin(2ωt)  + 3 sin(4ωt)     amperes

Solution

The reversed negative half cycle is mirror image of the positive half-cycle about a

vertical line drawn at t = T/2.



Harmonic Synthesis

Example 5–9

Consider the complex current expressions given by the following

complex wave, draw and analyze.

ic = 10 sin(ωt) + 4 sin(2ωt + π/2)  amperes



Harmonic Synthesis

Example 5–9

ic = 10 sin(ωt) + 4 sin(2ωt + π/2)  amperes

Solution

The positive and negative half-cycles of the resultant waveform ic are seen to be quite

dissimilar.



Harmonic Synthesis

Example 5–10

Consider the complex current expression given by the following complex

wave, draw and analyze.

id = 10 sin(ωt) + 4 sin(2ωt + π)  amperes



Harmonic Synthesis

Example 5–10

id = 10 sin(ωt) + 4 sin(2ωt + π)  amperes

Solution

The reversed negative half cycle is mirror image of the positive half-cycle about a

vertical line drawn at t = T/2.



Harmonic Synthesis

General conclusions on Examples 6.7 to 6.10

(a) If the harmonics are initially in phase or if there is a phase-shift of π

rad, the negative half-cycle, when reversed, is a mirror image of the

positive half-cycle about a vertical line drawn through time, t = T/2;

(a) If the harmonics are initially out of phase with each other (i.e., other

than π rad), the positive and negative half-cycles are dissimilar.

𝑓 −𝑡 = −𝑓(𝑡 



Harmonic Synthesis

Example 5–11

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

vg = 50 sin(ωt) + 25 sin(2ωt) + 15 sin(3ωt)  volts



Harmonic Synthesis

Example 5–11

vg = 50 sin(ωt) + 25 sin(2ωt) + 15 sin(3ωt)  volts

Solution

The reversed negative half cycle is mirror image of the positive half-cycle about a

vertical line drawn at t = T/2.



Harmonic Synthesis

Example 5–12

Consider the complex voltage expression given by the following

complex wave, draw and analyze.

vh = 50 sin(ωt) + 25 sin(2ωt −π) + 15 sin(3ωt+ π/2)  volts



Harmonic Synthesis

Example 5–12

vh = 50 sin(ωt) + 25 sin(2ωt −π) + 15 sin(3ωt+ π/2)  volts

The positive and negative half-cycles of the resultant waveform ic are seen to be quite

dissimilar.



Harmonic Synthesis

General conclusions on examples 11 and 12

(a) If the harmonics are initially in phase with each other, the negative

cycle, when reversed, is a mirror image of the positive half-cycle

about a vertical line drawn through time, t = T/2;

(b) If the harmonics are initially out of phase with each other, the

positive and negative half-cycles are dissimilar.



Harmonic Synthesis

Example 5–13

Consider the complex current expression given by the following complex

wave, draw and analyze.

i =32 + 50 sin(ωt) + 20 sin(2ωt − π/2)     mA



Harmonic Synthesis

Example 5–13

i =32 + 50 sin(ωt) + 20 sin(2ωt − π/2)     mA

Solution
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