Lecture 8 Taylor and Laurent series

Dr. Moataz El-Zekey

Complex sequences

- \square An *infinite sequence* of complex numbers $z_1, z_2, \dots, z_n, \dots$, denoted by $\{z_n\}$, can be considered as a function defined on a set of positive integers into the complex plane.
- For example, we take $z_n = \frac{n+i}{2^n}$ so that the complex sequence is

$${z_n} = \left\{\frac{1+i}{2}, \frac{2+i}{2^2}, \frac{3+i}{2^3}, \cdots\right\}$$

- ☐ Convergence of complex sequences
 - Given a complex sequence $\{z_n\}$, if for each positive quantity ϵ , there exists a positive integer N such that

$$|z_n - z| < \epsilon$$
 whenever $n > N$,

then the sequence is said to *converge* to the limt z. We write

$$\lim_{n\to\infty} z_n = z.$$

If there is no limit, we say that the sequence *diverges*.

Complex sequences

☐ It is easy to show that

$$\lim_{n\to\infty} z_n = z \Longleftrightarrow \lim_{n\to\infty} x_n = x \quad \text{and} \quad \lim_{n\to\infty} y_n = y.$$

- ➤ Therefore, the study of the convergence of a complex sequence is equivalent to the consideration of two real sequences.
- ☐ The above theorem enables us to write

$$\lim_{n \to \infty} (x_n + iy_n) = \lim_{n \to \infty} x_n + i \lim_{n \to \infty} y_n$$

whenever we know that both limits on the right exist or the one on the left exists.

For example, the sequence

$$z_n = \frac{1}{n^3} + i, \quad n = 1, 2, \cdots,$$

converges to i since $\lim_{n\to\infty}\frac{1}{n^3}$ and $\lim_{n\to\infty}1$ exist, so

$$\lim_{n\to\infty}\left(\frac{1}{n^3}+i\right)=\lim_{n\to\infty}\frac{1}{n^3}+i\lim_{n\to\infty}1=0+i\cdot 1=i.$$

Infinite series of complex numbers

• An *infinite series* of complex numbers $z_1, z_2, \dots, z_n, \dots$ is the infinite sum of the sequence $\{z_n\}$ given by

$$z_1+z_2+z_3+\cdots=\lim_{n\to\infty}\left(\sum_{k=1}^n z_k\right).$$

To study the properties of an infinite series, we define the sequence of *partial sums* $\{S_n\}$ by $S_n = \sum_{k=1}^n z_k.$

If the limit of the sequence $\{S_n\}$ converges to S, then the series is said to be *convergent* and S is its *sum*; otherwise, the series is *divergent*.

- The sum, when it exists, is unique.
- The consideration of an infinite series is relegated to that of an infinite sequence of partial sums.

Infinite series of complex numbers

☐ Convergence of Complex Series

Theorem 6.2 Suppose that $z_n = x_n + iy_n$ (n = 1, 2, ...) and S = X + iY. Then

$$\sum_{1}^{\infty} z_n = S \iff \sum_{1}^{\infty} x_n = X \text{ and } \sum_{1}^{\infty} y_n = Y.$$

- \triangleright Hence, Σz_n is convergent if and only if Σx_n and Σy_n are convergent.
- There are many parallels with real series.
- Now if Σx_n and Σy_n are convergent, then $x_n \to 0$, $y_n \to 0$. We deduce that Σz_n convergent $\Rightarrow z_n \to 0$. Of course, the converse is false!!.
- ➤ Hence, A necessary condition for the convergence of a complex series is that

$$\lim_{n\to\infty} z_n = 0.$$

So the terms of a convergent complex sequence are bounded: that is, there exists M: $|z_n| < M$ for all n.

Infinite series of complex numbers

☐ Absolute convergence

The complex series $\sum\limits_{n=1}^{\infty}z_n$ is absolutely convergent if $\sum\limits_{n=1}^{\infty}|z_n|$ converges. Note that $|z_n|=\sqrt{x_n^2+y_n^2}$ and since

$$|x_n| \le \sqrt{x_n^2 + y_n^2}$$
 and $|y_n| \le \sqrt{x_n^2 + y_n^2}$,

then from the comparison test, the two series

$$\sum_{n=1}^{\infty} |x_n| \quad \text{and} \quad \sum_{n=1}^{\infty} |y_n|$$

must converge. Thus, absolute convergence in a complex sequence implies convergence in that sequence.

The converse may not hold. If Σz_n converges but $\Sigma |z_n|$ does not, the series Σz_n is said to be *conditionally convergent*. For example,

$$-\text{Log}(1 - e^{i\theta}) = \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}, \quad \theta \neq 0,$$

is conditionally convergent.

Infinite series of complex numbers

Example

Show that the series $\sum_{j=1}^{\infty} (3+2i)/(j+1)^j$ converges.

Solution

We compare the series

$$\sum_{i=1}^{\infty} \frac{3+2i}{(j+1)^j} = \frac{(3+2i)}{9} + \frac{(3+2i)}{64} + \cdots \tag{A}$$

with the convergent geometric series

$$\sum_{j=1}^{\infty} \frac{1}{2^j} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$
 (B)

Since $|3+2i|=\sqrt{13}<4$, one can easily verify that for $j\geq 3$

$$\left| \frac{3+2i}{(j+1)^j} \right| < \frac{4}{(j+1)^j} \le \frac{1}{2^j}.$$

The terms of (B) dominate those of (A), hence (A) converges.

Sequences of complex functions

Let $f_1(z), \dots, f_n(z), \dots$, denoted by $\{f_n(z)\}$, be a sequence of complex functions of z that are defined and single-valued in a region R in the complex plane.

For some point $z_0 \in R$, $\{f_n(z_0)\}$ becomes a sequence of complex numbers. Supposing $\{f_n(z_0)\}$ converges, the limit is unique. The value of the limit depends on z_0 , and we write

$$f(z_0) = \lim_{n \to \infty} f_n(z_0).$$

If this holds for every $z \in R$, the sequence $\{f_n(z)\}$ defines a complex function f(z) in R. We write

$$f(z) = \lim_{n \to \infty} f_n(z).$$

This is usually called *pointwise convergence*.

The region R is called the *region of convergence* of the sequence of complex functions.

4

Convergence of series of complex functions

An infinite series of complex functions

$$f_1(z) + f_2(z) + f_3(z) + \dots = \sum_{k=1}^{\infty} f_k(z)$$

is related to the sequence of partial sum $\{S_n(z)\}$

$$S_n(z) = \sum_{k=1}^n f_k(z).$$

The infinite series is said to be convergent if

$$\lim_{n\to\infty} S_n(z) = S(z),$$

where S(z) is called the *sum*; otherwise the series is *divergent*.

Example. Show that the series

$$z(1-z)+z^2(1-z)+z^3(1-z)+\cdots$$

converges for |z| < 1 and find its sum.

Solution

$$S_n(z) = z(1-z) + \dots + z^n(1-z)$$

= $z - z^2 + z^2 - z^3 + \dots + z^n - z^{n+1} = z - z^{n+1}$.

Hence, $\lim_{n\to\infty} S_n(z) = z$ for all z such that |z| < 1.

Convergence of series of complex functions

Many of the properties related to convergence of complex functions can be extended from their counterparts of complex numbers. For example, a necessary but not sufficient condition for the infinite series of complex functions to converge is that

$$\lim_{k \to \infty} f_k(z) = 0,$$

for all z in the region of convergence.

☐ Weierstrass *M*-test.

If $|f_k(z)| \leq M_k$ where M_k is independent of z in \mathcal{R} and the series $\sum M_k$ converges, then $\sum f_k(z)$ is convergent in \mathcal{R} .

Convergence of series of complex functions

 \square Test for convergence using the *M*-test

1.
$$\sum_{n=1}^{\infty} \frac{z^n}{n\sqrt{n+1}}, |z| \le 1.$$

Note that $|f_n(z)|=\frac{|z|^n}{n\sqrt{n+1}}\leq \frac{1}{n^{3/2}}$ if $|z|\leq 1$. Take $M_n=\frac{1}{n^{3/2}}$ and note that $\sum M_n$ converges.

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + z^2}, 1 < |z| < 2.$$

Omit the first two terms since it does not affect the convergence property. For $n \ge 3$ and 1 < |z| < 2, we have

$$|n^2+z^2| \ge |n^2|-|z^2| \ge n^2-4 \ge \frac{n^2}{2}$$
 so that $\left|\frac{1}{n^2+z^2}\right| \le \frac{2}{n^2}$.

Take $M_n = \frac{2}{n^2}$ and note that $\sum_{n=3}^{\infty} \frac{2}{n^2}$ converges.

Convergence of series of complex functions

Example. Show that the following the complex series is absolutely convergent when z is real but it becomes divergent when z is non-real.

$$\sum_{k=1}^{\infty} \frac{\sin kz}{k^2},$$

Solution (i) When z is real, we have

$$\left| \frac{\sin kz}{k^2} \right| \leq \frac{1}{k^2}, \quad \text{for all positive integer values of } k.$$

Since $\sum_{k=1}^{\infty} 1/k^2$ is known to be convergent, then $\sum_{k=1}^{\infty} \sin kz/k^2$ is absolutely convergent for all z by virtue of the comparison test.

(ii) When z is non-real, we let $z = x + iy, y \neq 0$. From the relation

$$\frac{\sin kz}{k^2} = \frac{e^{-ky}e^{ikx} - e^{ky}e^{-ikx}}{2k^2i},$$

we deduce that

$$\left| rac{\sin kz}{k^2}
ight| \geq rac{e^{k|y|} - e^{-k|y|}}{2k^2}
ightarrow \infty ext{ as } k
ightarrow \infty.$$

Since $\left|\sin kz/k^2\right|$ is unbounded as $k\to\infty$, the series is divergent.

Convergence of series of complex functions

Example. Show that the geometric series $\sum_{n=0}^{\infty} z^n$ converges to $\frac{1}{1-z}$ on any

closed subdisk $|z| \le r < 1$ of the open unit disk |z| < 1.

Solution

To establish the convergence of the series for $|z| \le r < 1$, we apply the *M*-test. We have

$$|f_n(z)| = |z^n| \le r^n = M_n$$

for all $|z| \leq r$.

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=0}^{\infty} r^n$ is convergent if $0 \le r < 1$, we conclude that

the series $\sum_{n=1}^{\infty} z_n$ converges for $|z| \leq r$.

Convergence of series of complex functions

☐ Some Stated Results

- For convergent infinite series of complex functions, properties such as continuity and analyticity of the continuous functions $f_k(z)$ are carried over to the sum S(z).
- More precisely, suppose $f_k(z)$, $k = 1, 2, \dots$, are all continuous (analytic) in the region of convergence, then the sum $S(z) = \sum f_k(z)$ is also continuous (analytic) in the same region.
- Further, a convergent infinite series allows for termwise differentiation and integration, that is,

$$\int_{C} \sum_{k=1}^{\infty} f_k(z) dz = \sum_{k=1}^{\infty} \int_{C} f_k(z) dz$$
$$\frac{d}{dz} \sum_{k=1}^{\infty} f_k(z) = \sum_{k=1}^{\infty} f'_k(z).$$

W

Power series

- We shall be particularly concerned with power series.
- A series of the form

$$a_0 + \sum_{1}^{\infty} a_n (z - z_0)^n = \sum_{0}^{\infty} a_n (z - z_0)^n$$

where z_0 and the a_n are complex constants, and z is any number (variable) in a stated region, is called a power series around the point z_0 .

- Given a power series there exists a non-negative real number R, R can be zero or infinity, such that the power series converges absolutely for $|z z_0| < R$, and diverges for $|z z_0| > R$.
- R is called the *radius of convergence*.
- $|z z_0| = R$ is called the *circle of convergence*.
- The radius of convergence R is given by $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|$, as a consequence of the *Ratio test*, given that the limit exists.
- The geometric series $\sum_{n=0}^{\infty} z^n$ is in fact a power series with $z_0 = 0$, $a_n = 1$,

converges absolutely on |z| < 1 to the analytic function 1/(1-z). Thus, its radius of convergence is R = 1.

Power series

- (i) $R=\infty$ when $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=0$. The series converges in the whole plane.
- (ii) R=0 when $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=0$. The series does not converges for any z other than z_0 .

□ Example

Find the circle of convergence for the following power series:

$$\sum_{k=1}^{\infty} \frac{1}{k} (z-i)^k,$$

Solution By the ratio test, we have

$$R = \lim_{k \to \infty} \frac{1/k}{1/(k+1)} = 1;$$

so the circle of convergence is |z - i| = 1.

ŊΑ

Power series

Example. Find the circle of convergence for the power series: $\sum_{k=1}^{\infty} \left(\frac{z}{k}\right)^k$

Solution By the ratio test, we have

$$R = \lim_{k \to \infty} \frac{\left(\frac{1}{k}\right)^k}{\left(\frac{1}{k+1}\right)^{k+1}} = \lim_{k \to \infty} (k+1) \left(1 + \frac{1}{k}\right)^k = \infty;$$

so the circle of convergence is the whole complex plane.

- ☐ The radius of convergence can also be found by $R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}$, which is a consequence of the *Root Test*.
- □ Example. Find the circle of convergence for the power series: $\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^{k^2} z^k$.

Solution By the root test, we have

$$\frac{1}{R} = \lim_{k \to \infty} \sqrt[k]{\left(1 + \frac{1}{k}\right)^{k^2}} = \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k = e,$$

so the circle of convergence is |z| = 1/e.

М

Power series

• If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \in \mathbb{C}$ then it converges for all $z \in \mathbb{C}$ such that $|z| < |z_0|$.

Proof. It follows from the hypothesis that there exist $M \ge 0$ such that $|a_n z_0^n| \le M$ for all $n \in \mathbb{N}$.

Note that

$$|a_nz^n|=|a_nz_0|^n\left|\frac{z}{z_0}\right|^n\leq M\left|\frac{z}{z_0}\right|^n.$$

The proof now follows from the comparison test, and behavior of geometric series.

- ☐ If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges at $z=z_1 (\neq z_0)$ then it converges (absolutely) for all $z \in \mathbb{C}$ such that $|z-z_0| < |z_1-z_0|$.
- Figure 1. If it diverges at some point $z = z_1$, then it diverges at all points z that satisfy the inequality $|z z_0| > |z_1 z_0|$.

Power series

☐ Some useful results

Let $S(z) = \sum_{n} a_n z^n$ over some circle of convergence C_1 . Thus S is the function defined by the convergent power series. Then

- (1) Function S(z) is continuous at each z interior to C_1 .
- (2) Function S(z) is analytic at each z interior to C_1 .
- (3) If C is any contour interior to C_1 , then the power series can be integrated term by term, i.e.

$$\int_C S(z) dz = \sum_0^\infty a_n \int_C z^n dz.$$

(4) The power series can be differentiated term by term.

Thus for each z inside C_1 ,

$$S'(z) = \sum_{1}^{\infty} n a_n z^{n-1}.$$

Power series

Example. We have

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \quad |z| < 1.$$

By differentiating the series term-by term, it follows that

$$1 + 2z + 3z^2 + \cdots = \sum_{j=0}^{\infty} (j+1)z^j = \frac{1}{(1-z)^2}.$$

Its radius of convergence is 1.

Example. We have

$$1-z+z^2-z^3-\cdots = (1+z)^{-1} = \frac{d}{dz}\text{Log}(1+z)$$

By integrating the series term-by term, it follows that

$$Log(1+z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{j+1}}{j+1} = z - \frac{z^2}{2} + \frac{z^3}{3} + \cdots$$

Its radius of convergence is also 1.

Power series

Suppose a power series represents the function f(z) inside the circle of convergence, that is,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
.

It is known that a power series can be differentiated termwise so that

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}$$

$$f''(z) = \sum_{n=2}^{\infty} n(n-1) a_n (z - z_0)^{n-2}, \cdots.$$

Putting $z = z_0$ successively, we obtain

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \quad n = 0, 1, 2,$$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Torri

Taylor's Series

- A power series represents an analytic function inside its circle of convergence.
- Can we expand an analytic function in Taylor series and how is the domain of analyticity related to the circle of convergence?

☐ Taylor series theorem

Let f be analytic everywhere inside the circle $C: |z - z_0| = r_0$. Then, f has the series representation (called the *Taylor series* of f at z_0 .)

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z-z_0) + \frac{f''(z_0)}{2!}(z-z_0)^2 + \cdots = \sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!}(z-z_0)^j,$$

which converges for all z such that $|z - z_0| < r_0$.

- Taylor's series with $z_0 = 0$ is called the *Maclaurin series* of f.
- Uniqueness of Taylor Series: If

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

inside the circle of convergence, then the series is the Taylor series of f at z_0 .

Example. Consider the function $\frac{1}{1-z}$, the Taylor series at z=0 is given by

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \quad |z| < 1.$$

- The function has a singularity (i.e. the point at which the function is not analytic) at z = 1. The maximum distance from z = 0 to the nearest singularity is one, so the radius of convergence is one.
- Alternatively, the radius of convergence can be found by the ratio test, where

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = 1.$$

• If we integrate along the contour C inside the circle of convergence |z| < 1 from the origin to an arbitrary point z, we obtain

$$\int_C \frac{1}{1-\zeta} d\zeta = \sum_{n=0}^{\infty} \int_C \zeta^n d\zeta$$
$$-\text{Log}(1-z) = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1} = \sum_{n=1}^{\infty} \frac{z^n}{n}.$$

The radius of convergence is again one (checked by the ratio test).

Example. Calculating the derivatives of all orders at $z_0 = 0$ of the entire functions e^z , $\cos z$, $\sin z$, $\cosh z$, $\sinh z$, we obtain the following Maclaurin series expansions, which are valid on $|z| < \infty$:

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots = \sum_{j=0}^{\infty} \frac{z^{j}}{j!},$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \frac{z^{6}}{6!} + \cdots = \sum_{j=0}^{\infty} (-1)^{j} \frac{z^{2j}}{(2j)!},$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \frac{z^{7}}{7!} + \cdots = \sum_{j=0}^{\infty} (-1)^{j} \frac{z^{2j+1}}{(2j+1)!},$$

$$\cosh z = 1 + \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \frac{z^{6}}{6!} + \cdots = \sum_{j=0}^{\infty} \frac{z^{2j}}{(2j)!},$$

$$\sinh z = z + \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \frac{z^{7}}{7!} + \cdots = \sum_{j=0}^{\infty} \frac{z^{2j+1}}{(2j+1)!}.$$

Example. The consecutive derivatives of Log z are 1/z, $-1/z^2$, $2/z^3 \cdots$; in general,

$$\frac{d^{j}\operatorname{Log} z}{dz^{j}} = (-1)^{j+1}(j-1)!z^{-j}, \quad j = 1, 2, \cdots.$$

Evaluating these at z = 1, we find the Taylor series expansion

$$\operatorname{Log} z = 0 + (z - 1) - \frac{(z - 1)^2}{2!} + 2! \frac{(z - 1)^3}{3!} - 3! \frac{(z - 1)^4}{4!} + \cdots
= \sum_{i=1}^{\infty} \frac{(-1)^{j+1} (z - 1)^j}{j}.$$

This is valid for |z - 1| < 1, the largest open disk centered at 1 over which Log z is analytic.

Example. Write $1/(9 + z^2) = 1/[9(1 - w)]$, where $w = -z^2/9$. Thus, as long as |w| < 1; i.e., $|-z^2/9| < 1$ or |z| < 3, we have

$$\frac{1}{9+z^2} \ = \ \frac{1}{9} \sum_{j=0}^{\infty} w^j \ = \ \frac{1}{9} \sum_{j=0}^{\infty} \left(-\frac{z^2}{9} \right)^n.$$

Example. Use partial fractions to obtain

$$\frac{1}{z^2 - 5z + 6} = \frac{1}{(z - 3)(z - 2)} = \frac{1}{z - 3} - \frac{1}{z - 2}$$

$$= \frac{1}{2} \left(\frac{1}{1 - z/2} \right) - \frac{1}{3} \left(\frac{1}{1 - z/3} \right)$$

$$= \frac{1}{2} \sum_{j=0}^{\infty} \left(\frac{z}{2} \right)^j - \frac{1}{3} \sum_{j=0}^{\infty} \left(\frac{z}{3} \right)^j$$

$$= \sum_{j=0}^{\infty} \left[\left(\frac{1}{2} \right)^{j+1} - \left(\frac{1}{3} \right)^{j+1} \right] z^j, \quad |z| < 2.$$

Example. Consider the function $f(z) = (1 + 2z)/(z^3 + z^4)$. We cannot find a Maclaurin series for f(z) since it is not analytic at z = 0. However, we can write f(z) as

$$f(z) = \frac{1}{z^3} \left(2 - \frac{1}{1+z} \right)$$

Now 1/(1+z) has a Taylor series expansion around the point z=0.

Thus, when 0 < |z| < 1, it follows that

$$f(z) = \frac{1}{z^3}(2-1+z-z^2+z^3-z^4+z^5-z^6+\cdots)$$
$$= \frac{1}{z^3} + \frac{1}{z^2} - \frac{1}{z} + 1 - z + z^2 - z^3 + \cdots.$$

This is not a Maclaurin series: the first two terms are unexpected, and function f has a singularity at z = 0.

Question Perhaps there are other interesting series to investigate?

Consider an infinite power series with negative power terms

$$\sum_{n=1}^{\infty} b_n (z-z_0)^{-n},$$

how to find the region of convergence? Set $w=\frac{1}{z-z_0}$, the series

becomes
$$\sum\limits_{n=1}^{\infty}b_nw^n$$
, a Taylor series in w . Suppose $R'=\lim\limits_{n\to\infty}\left|\frac{b_n}{b_{n+1}}\right|$ exists, then $\sum\limits_{n=1}^{\infty}b_nw^n$ converges for $|w|< R'\Leftrightarrow |z-z_0|>\frac{1}{R'}$.

exists, then
$$\sum_{n=1}^{\infty} b_n w^n$$
 converges for $|w| < R' \Leftrightarrow |z - z_0| > \frac{1}{R'}$.

- Special cases: (i) R' = 0 and (ii) $\frac{1}{R'} = 0$.
 - In the first case: the series does not converge for any z, not even at $z = z_0$.
 - (ii) In the second case: by virtue of the ratio test, the region of convergence is the whole complex plane except at $z = z_0$, that is, $|z - z_0| > 0$.

For the more general case (Laurent series at z_0)

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n + \underbrace{\sum_{n=1}^{\infty} b_n (z-z_0)^{-n}}_{\text{principal part}},$$

suppose $R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|$ and $R'=\lim_{n\to\infty}\left|\frac{b_n}{b_{n+1}}\right|$ exists, and RR'>1, then inside the annular domain

$$\left\{z: \quad \frac{1}{R'} < |z - z_0| < R\right\}$$

the Laurent series is convergent.

The annulus degenerates into

- (i) hollow plane if $R = \infty$
- (ii) punctured disc if $R' = \infty$.

□ Laurent series theorem

Let f(z) be analytic in the annulus $A: R_1 < |z-z_0| < R_2$, then f(z) can be represented by the Laurent series,

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k,$$

which converges to f(z) throughout the annulus. The Laurent coefficients are given by

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta, \quad k = 0, \pm 1, \pm 2, \cdots,$$

where C is any simple closed contour lying completely inside the annulus and going around the point z_0 .

Laurent series

Remarks

- 1) A Laurent series defines a function f(z) in its annular region of convergence. The Laurent series theorem states that a function analytic in an annulus can be expanded in a Laurent series expansion.
- 2) Suppose f(z) is analytic in the full disc: $|z z_0| < R_2$ (without the punctured hole), then the integrand in calculating c_k for negative k becomes analytic in $|z z_0| < R_2$. Hence, $c_k = 0$ for $k = -1, -2, \cdots$. The Laurent series is reduced to a Taylor series.
- 3) When k = -1, $c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) d\zeta.$

We may find c_{-1} by any means, so a contour integral can be evaluated without resort to direct integration.

Example. From the Maclaurin series expansion of e^z , it follows that the Laurent series expansion of $e^{1/z}$ about 0 is

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!z^n}.$$

The function $e^{1/z}$ is analytic everywhere except at z=0 so that the annulus of convergence is |z|>0. We observe

$$\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = 0$$
 so that $\frac{1}{R'} = 0$.

Lastly, we consider $\oint_C e^{1/z}\,dz$, where the contour C is |z|=1. Since C lies completely inside the punctured disc |z|>0, we have

$$\oint_C e^{1/z} dz = 2\pi i (\text{coefficient of } \frac{1}{z} \text{ in Laurent expansion}) = 2\pi i$$

> By comparing the coefficients, we obtain

$$\oint_{\mathcal{C}} \frac{e^{1/z}}{z^{1-n}} dz = \frac{2\pi i}{n!}, \quad n \in \mathbb{N}.$$

Ŋġ

Laurent series

Example

Find all the possible Taylor and Laurent series expansions of

$$f(z) = \frac{1}{(z-i)(z-2)}$$
 at $z_0 = 0$.

Specify the region of convergence (solid disc or annulus) of each of the above series.

Laurent series

Solution

There are two isolated singularities, namely, at z=i and z=2. The possible circular or annular regions of analyticity are

(i)
$$|z| < 1$$
, (ii) $1 < |z| < 2$, (iii) $|z| > 2$.

(i) For |z| < 1

$$\frac{1}{z-i} = \frac{i}{1-\frac{z}{i}} = i \left[1 + \frac{z}{i} + \dots + \left(\frac{z^n}{i^n} \right) + \right] \quad \text{for} \quad |z| < 1$$

$$\frac{1}{z-2} = \left(-\frac{1}{2} \right) \frac{1}{1-\frac{z}{2}} = \left(-\frac{1}{2} \right) \left[1 + \frac{z}{2} + \dots + \left(\frac{z}{2} \right)^n + \dots \right] \quad \text{for} \quad |z| < 2$$

$$f(z) = \frac{1}{i-2} \left(\frac{1}{z-i} - \frac{1}{z-2} \right) = \frac{1}{i-2} \left[i \sum_{n=0}^{\infty} \left(\frac{z}{i} \right)^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2} \right)^n \right]$$

$$= \frac{1}{i-2} \sum_{n=0}^{\infty} \left[\left(\frac{1}{i} \right)^{n-1} + \frac{1}{2^{n+1}} \right] z^n.$$

This is a Taylor series which converges inside the solid disc |z| < 1.

T annual

Laurent series

(ii) For 1 < |z| < 2

$$\frac{1}{z-i} = \frac{1}{z} \frac{1}{1-\frac{i}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{i}{z}\right)^n \qquad \text{valid for } |z| > 1$$

$$\frac{1}{z-2} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} \qquad \text{valid for } |z| < 2$$

$$f(z) = \frac{1}{i-2} \left[\sum_{n=0}^{\infty} \left(\frac{i^n}{z^{n+1}} + \frac{z^n}{2^{n+1}} \right) \right] \qquad \text{valid for } 1 < |z| < 2.$$

(iii) For |z| > 2

$$\frac{1}{z-i} = \sum_{n=0}^{\infty} \frac{i^n}{z^{n+1}} \qquad \text{valid for } |z| > 1$$

$$\frac{1}{z-2} = \frac{1}{z} \frac{1}{1-\frac{2}{z}} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} \qquad \text{valid for } |z| > 2$$

$$f(z) = \frac{1}{i-2} \left[\sum_{n=0}^{\infty} (i^n - 2^n) \frac{1}{z^{n+1}} \right] \qquad \text{valid for } |z| > 2.$$

Νė

Laurent series

Example

Find all possible Laurent series of

$$f(z) = \frac{1}{1 - z^2}$$
 at the point $\alpha = -1$.

Solution

The function has two isolated singular points at z=1 and z=-1. There exist two annular regions (i) 0 < |z+1| < 2 and (ii) |z+1| > 2 where the function is analytic everywhere inside the respective region.

Ŋ.

Laurent series

(i)
$$0 < |z+1| < 2$$

$$\frac{1}{1-z^2} = \frac{1}{2(z+1)\left(1-\frac{z+1}{2}\right)}$$

$$= \frac{1}{2(z+1)} \sum_{k=0}^{\infty} \frac{(z+1)^k}{2^k}$$

$$= \frac{1}{2(z+1)} + \frac{1}{4} + \frac{1}{8}(z+1) + \frac{1}{16}(z+1)^2 + \cdots$$

The above expansion is valid provided $\left| \frac{z+1}{2} \right| < 1$ and $z+1 \neq 0$.

Given that 0 < |z + 1| < 2, the above requirement is satisfied.

For any simple closed curve C_1 lying completely inside |z+1| < 2 and encircling the point z = -1, we have

$$c_{-1} = \frac{1}{2\pi i} \oint_{C_1} \frac{1}{1 - z^2} dz = \frac{1}{2}.$$

Ŋė.

Laurent series

(ii)
$$|z+1| > 2$$

$$\frac{1}{1-z^2} = -\frac{1}{(z+1)^2 \left(1 - \frac{2}{z+1}\right)}$$

$$= -\frac{1}{(z+1)^2} \sum_{k=0}^{\infty} \frac{2^k}{(z+1)^k} \text{ since } \left|\frac{2}{z+1}\right| < 1$$

$$= -\left[\frac{1}{(z+1)^2} + \frac{2}{(z+1)^3} + \frac{4}{(z+1)^4} + \cdots\right].$$

For any simple closed curve C_2 encircling the circle: |z+1|=2, we have

$$c_1 = \frac{1}{2\pi i} \oint_{C_2} \frac{1}{1 - z^2} dz = 0.$$

Thank you. Dr. Moataz El-Zekey