Lecture 8

Taylor and Laurent series

Dr. Moataz El-Zekey
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Complex sequences

O An zzfinite sequernce of complex numbers z4, z5, -+ , Z,,, -+, denoted by {z,}, can be
considered as a function defined on a set of positive integers into the complex plane.

+i :
» For example, we take z,, = % so that the complex sequence is

(o) ={1;—£’22-|;i132-i;i1_”}

L Convergence of complex sequences

= Given a complex sequence {z,}, if for each positive quantity €, there
exists a positive integer /Vsuch that

|zn —z| < e whenever n > N,
then the sequence is said to cozverge to the limt z. We write

Alm zn = z.

If there is no limit, we say that the sequence Zzver.ges.



'_
Complex sequences

O It is easy to show that

nll_mm S g ﬂime. rn =x and ?llex Yn = V.

» Therefore, the study of the convergence of a complex sequence is equivalent to
the consideration of two real sequences.

[ The above theorem enables us to write
_}J'_rmxl(ﬂf-n + tyn) = n'me Tn + ¢ n“_’mm Yn
whenever we know that both limits on the right exist or the one on the left exists.
For example, the sequence
1 .
m=—=+i n=12- -,
T

.. . 1 . .
converges to z since lim — and lim 1 exist, so

. 1 _ : 1 . . .
lim (E-H) —nll_}mmg-l—inll_}mml—{)—l-t-l—i.

— 00
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Infinite series of complex numbers

» An zzfinife series of complex numbers zq, z,, **+ , Z,, - 1s the infinite sum of the
sequence {z,} given by

Tt
31+32+Z3+”-=n”_,mm(z zk)-
k=1

= To study the properties of an infinite series, we define the sequence of parzzal sums
{S,,} by n

Sn — Z Zh-

k=1

= If the limit of the sequence {S,,} converges to .S, then the series is said to be
convergens and S'is its sumz;, otherwise, the series is &zvergerit.

= The sum, when it exists, is unique.

= The consideration of an infinite series is relegated to that of an infinite sequence of
partial sums.
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Infinite series of complex numbers

O Convergence of Complex Series

Theorem 6.2 Suppose thatz,=x, +iy,(n=1,2,...)and S = X + (Y. Then

ZTZN:S < chnxn X anle yn

» Hence, X z,, is convergent if and only if £ x,, and X y,, are convergent.
» There are many parallels with real series.

» Now if X x,, and X y,, are convergent, then x,, — 0, y,, — 0. We deduce that X z,
convergent = z,, — 0. Of course, the converse is false!!.
» Hence, A necessary condition for the convergence of a complex series is that

Iim 2z = 0.

n— 0O
» So the terms of a convergent complex sequence are bounded:
that is, there exists M: |z, | < M for all n.
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Infinite series of complex numbers

[ Absolute convergence

20 . ]
The complex series ) zn is absolutely convergent if ) |zn| con-
n—1 n—1

verges. Note that |z;| = \/z2 4+ y2 and since

lzn| < Va2 + 92 and  |ya| < V22 + 92,

then from the comparison test, the two series

o0 50
|lzn| and |Yn|
1 1

TI—

must converge. Thus, absolute convergence in a complex sequence
implies convergence in that sequence.

n=

The converse may not hold. If 2z, converges but 2 |zn| does not,
the series 2z is said to be conditionally convergent. For example,

, 00 ind
—Log(1l —e) = ¥

n=1

9 # 0,

is conditionally convergent.
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Infinite series of complex numbers

Example

. ]
Show that the series Z (34 2i)/(j + 1)7 converges.
J=1

Solution

We compare the series

3 3+2i _ (3+42)  3+2)

— + A
= G+ 9 64 .
with the convergent geometric series|
=2 1 i I T ]
— =4 —4+—-—4+---. B
Xa=atatst (B)

Since |3 4+ 2i| = +/13 < 4, one can easily verify that for 7 = 3

3422 - 4 & i
G+1y| " G+1)y 27
The terms of (B) dominate those of (A), hence (A) converges.
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Sequences of complex functions

Let fi(z), -, fn(2), -+, denoted by {f.(z)}, be a sequence of com-
plex functions of z that are defined and single-valued in a region R
in the complex plane.

For some point zg € R,{fn(zp)} becomes a sequence of complex
numbers. Supposing {fn(zg)} converges, the limit is unique. The
value of the limit depends on zg, and we write

f(z0) = lim_fn(z0).

If this holds for every z € R, the sequence { f,,(z)} defines a complex
function f(z) in R. We write
f(z) = lim_fa(2).

This is usually called pointwise convergence.

The region R is called the region of convergence of the sequence
of complex functions.
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Convergence of series of complex functions

An infinite series of complex functions

1)+ L)+ BE) 4+ =) filz)

k=1
is related to the sequence of partial sum {Sn(z)}

Sn(z) = ) fr(2).

k=1
The infinite series is said to be convergent if
anm Sn(z) = S(=z),
where S(z) is called the sum; otherwise the series is divergent.

Example. Show that the series
z2(1—2)4221—-2)+3Q-2)+---
converges for |z| < 1 and find its sum.

Solution
Sn(z) z2(1—2)4---42"(1-2)

— z_zﬂ_l_zg_z?:_l_____l_zﬂ-_zn—f—l=z_zﬂ.—1—1.

Hence, nanQoS”(z) = z for all z such that |z| < 1.
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Convergence of series of complex functions

Many of the properties related to convergence of complex functions
can be extended from their counterparts of complex numbers. For
example, a necessary but not sufficient condition for the infinite

series of complex functions to converge is that
lim fi.(z) =0,
k—oc

for all z in the region of convergence.

O Weierstrass M-test
If |fr(z)| < M where M, is independent of z in 'R and the series

> M, converges, then X f;.(z) is convergent in K.
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Convergence of series of complex functions

U Test for convergence using the A/-test

']"'t.
1. = 1.
z — Izl <
" _ St Take Mn = —3
Note that Uﬂ'(z)'_nmiﬁﬁ Iif [z] <1. Ta Ei'“—ﬂyz

and note that > M; converges.

2. 11*::’,9_*{:2.

Omit the first two terms since it does not affect the convergence property.
Forn > 3and1 < |z|] < 2, we have

2

n 2
1?12 - zQ] = ]n2| — |zzl >n2—-4> 5 so that

PR [P i Y
| [

)

2
and note that Z — converges.

Take M,, = 2 5
n=3 "

ﬂ_E
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Convergence of series of complex functions

Example. Show that the following the complex series is absolutely convergent

when zis real but it becomes divergent when zis non-real.
o0

Z sin kz
5
k=1 k

Solution (i) When =z is real, we have

” 1
_kg'.‘

sin kz

7 for all positive integer values of k.

0 4
Since ) 1/k? is known to be convergent, then ) sin kz/k? is
absolutely convergent for all z by virtue of the comparison test.

(ii) When z is non-real, we let z = = 4 iy, y = 0. From the relation
sinkz e—-‘iygikr - E‘.kye_iki'

K2 2k2; '

we deduce that
= 2k2

sin kz
kQ

— o0 as k — co.

Since |sin kz/kg is unbounded as k — oc, the series is divergent.
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Convergence of series of complex functions

s
. ) 1
Example. Show that the geometric series »_ 2" converges to ; on any

n=>0 —z
closed subdisk |z| < r < 1 of the open unit disk |z| < 1.

Solution

To establish the convergence of the series for |z| < r < 1, we apply the M-test.

We have
1fn(3)| = |zn1 <r'*= M,

for all |z < r.

o0 o0
Since Z M, = Z r'* is convergent if 0 < r < 1, we conclude that
n=1 n=>0

0
the series Z zn converges for |z| < r.
n=1



Convergence of series of complex functions

[ Some Stated Results

= For convergent infinite series of complex functions, properties such as continuity and
analyticity of the continuous functions f; (z) are carried over to the sum S(z).

= More precisely, suppose fi(z), k = 1,2,---, are all continuous (analytic) in the
region of convergence, then the sum S(z) =) fi(z) is also continuous (analytic) in
the same region.

= Further, a convergent infinite series allows for termwise differentiation and
integration, that is,

Z fr(z)dz = kgl ./C‘ fe(z) d=z

JC k=1

=Y fila) = Y K.
k=1 k=1
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Power series

= We shall be particularly concerned with power series.
= A series of the form

ag+ X1 ff»n(-‘f_ Eﬂ)n = Eﬁj“n(z - Hm)”

where z, and the a,, are complex constants, and zis any number (variable) in a
stated region, is called a power series around the point z,.

= @Given a power series there exists a non-negative real number R, R can be zero or
infinity, such that the power series converges absolutely for |z — z5| < R, and
diverges for |z — zg| > R.

» Ris called the radzus of convergence.

" |z — zy| = Ris called the czrele of convergence.

Ly

* The radius of convergence R is given by n“_}r‘lj,:o |, as a consequence of the
. . . . L |
KRario rfesz, given that the limit exists. n+1

OO
= The geometric series »_ 2" is in fact a power series with z, = 0, a,, = 1,

n=0

converges absolutely on |z| < 1 to the analytic function 1/(1 — z). Thus, its
radius of convergence is R= 1.
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Power series

(i) R = oo when nllmx | 0. The series converges in the whole
— an,
plane.
(i) R =0 when lim @n | — 0. The series does not converges for
ﬂ*n—l—l

any z other than zq.

O Example
Find the circle of convergence for the following power series:

Lol |

Z —(z — L:]
kzl
Solution By the ratio test, we have
1/k
R = ||r'n = 1;
k—oo 1/(k+ 1) '

so the circle of convergence is |z — i| = 1.
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Power series

00 s\ k
O Example. Find the circle of convergence for the power series: Z (E)
k=1

Solution By the ratio test, we have

1k
= lim l(k)k—{—l = gm (k+1) (1 T %)k =
(7+1)

so the circle of convergence is the whole complex plane.

1
O The radius of convergence can also be found by R =

. — - .
which is a consequence of the Koor 7esr. liMy—oc {f |an|

[ Example. Find the circle of convergence for the power series: » (1 + E) z*.
k=1
Solution By the root test, we have

1 k2 k
— = i k 1 T 1 -
R k;ﬂg@J(Hg) = lim (14+7) =

—00

so the circle of convergence is |z| = 1/e.



Power series

0

@ If a power series E a,z" converges for some zp € C then it converges for

n=I()

all z € C such that |z| < |z)].

Proof. It follows from the hypothesis that there exist M > 0 such that
lanzg| < M for all n € I.

Note that

n
Z

<M

Eanzn| — |anzﬂin
Py

Z0

The proof now follows from the comparison test, and behavior of geometric series.

0
U If a power series Z an(z — z0)" converges at z = z, (# zy) then it
n=0

converges (absolutely) for all z € C such that |z — zy| <|z; — Z,].

» If it diverges at some point z = z;, then it diverges at all points z that satisfy the
inequality |z — zg| > |z1 — 2zl .
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ower series

J Some useful results

Let $(z) =3, a,z" over some circle of convergence C,. Thus § is the function

defined by the convergent power series. Then
(1) Function 5(z) is continuous at each z interior to C}.
(2) Function 5(z) 1s analytic at each z interior to C;.

(3) If C is any contour interior to C,, then the power series can be integrated

term by term, i.e.

_fc S(z) = Y5 a f‘: zhdz,

(4) The power series can be differentiated term by term.

Thus for each z inside C,.

S =Y na,=z" 2,
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Power series

Example. We have
1 !
= Y z% |z]l=1.
1-=2 n=0

By differentiating the series term-by term, it follows that

(. ]

- 1
1422 4+32% 4+ = f+1l)e! = o——
Z{‘F '] (1—2)2
=0
Its radius of convergence is 1.
Example. We have
; | | d
=%t — 3% e = (B2 = —Eog(t 4L 2)
By integrating the series term-by term, it follows that
22
Log (1 + 2) Z{ 1)/ :g_EjL?JF...

j=0

Its radius of convergence is also 1.
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Power series
Suppose a power series represents the function f(z) inside the circle

of convergence, that is,

=0

f(z) = ) an(z—2z0)"

n=~0
It is known that a power series can be differentiated termwise so
that

>0

fi(z) = Z nan(z — zg)" 1
=1
)
f'(z) = Z n(n—1)an(z — ED)”_Qs o
n=>2
Putting =z = zg successively, we obtain
(n)
an = f {ED), g0 1.3
n!
oo p(n)
flz) = > ! n(,zﬂ)(z —izg)

n=>0
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Taylor’s Series

" A power series represents an analytic function inside its circle of convergence.
= (Can we expand an analytic function in Taylor series and how is the domain of
analyticity related to the circle of convergence?

L Taylor series theorem

Let £ be analytic everywhere inside the circle C : |z — zy | = 1. Then, £ has
the series representation (called the Zazy/lor series of f at z,.)
- . "(zg) , -z ; 2 F (2 |
Hz) = ,ff3|:]]+'f i!D {E—EI:]H-f g!ﬂ (z2—2p)* 4+ = Z / i J}{E—Eﬂ}:",
j=0

which converges for all zsuch that | z- z, | <z .

= Taylor’s series with z, = 0 is called the Maclaurin series of 1.

= Uniqueness of Taylor Series: If

f(z) = Z an(z — zg)"

n=>0
inside the circle of convergence, then the series is the Taylor series of 7 at z.
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Taylor’s Series

Example. Consider the function

, the Taylor series at z= 0 is given by

1 oo

= Z g 5] 21,

n=>0

1—=

= The function has a singularity (i.e. the point at which the function is not analytic) at
z = 1. The maximum distance from z = 0 to the nearest singularity is one, so the
radius of convergence is one.

= Alternatively, the radius of convergence can be found by the ratio test, where

-‘_1;{. — 1
{1;5_{_1:

R= lim

k—oo

= [If we integrate along the contour C inside the circle of convergence |z| < 1 from the
origin to an arbitrary point z, we obtain

fte = £ fow ap

n= / : .
) ! '( |
(o = _n—+1 (a5 T ok —'_'. X

—Log(l—2) = Z Z — \ "
n=0" +1 n=1 \ /

The radius of convergence is again one (checked by the ratio test). )
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Taylor’s Series

Example. Calculating the derivatives of all orders at z; = 0 of the entire functions
e?,cos z,sin z, cosh z, sinh z, we obtain the following Maclaurin series expansions,

which are valid on |z| < oo

i 7"2 "3 i E‘j
E“:1—|—E+——|—§—|— :ZF
Jj=0
-‘.r.'-'I ik ;:.-'U o &_EJ
cosz = 1—— 42 —Z 4 = S (c1p i
T TR ;j Y @5
g g gt = - p2+1
NS — g el = I *
i 3 "5 T ;': P 2+ 1)
-2 54 ~ b at ~2]
eaghz = 19— i ud vus g ulli
= ot 41 T 6l £ (2))!
3 . o7 o 2i+1
s r 2 i
ginhz = wasl el ol s =
3l BT Z 27 1)
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Taylor’s Series

Example. The consecutive derivatives of Log z are 1/z,—1/z%, 2/z3 -++; in general,

d’Log z

=i~ = (G-, j=1.2,.

Evaluating these at z= 1, we find the Taylor series expansion

(z—1)° (z—1)* . (z—1)*
gt it g o g

Z{ 1”1{“—_3_

This i1s valid for |z — 1| < 1, the largest open disk centered at 1 over which Log z
1s analytic.

Logz = 04(2—1)— e

Example. Write 1/(9 + z%) = 1/[9(1 — w)], wherew = —z2/9. Thus,
as long as |w| < 1;ie.,|—2z%/9] < lor|z| < 3, wehave

1 oo 1 oc 52 n
7 = anv = 52 (-F)
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Taylor’s Series

Example. Use partial fractions to obtain

1
22 Bz 48

g
L
|
— G
(i |
I
)

ot
e
ey
S
e R
|

L7
o~
ba| ta
|=-+
Cad | =
e =1

(o
|

sy
|
=



Taylor’s Series

Example. Consider the function f(z) = (1 + 22)/(z3 + z*). We cannot find a
Maclaurin series for f{2) since it is not analytic at z= 0. However, we can write A2) as

1 1
o~ T l::_
fz) 23 (" 1 +z')

Now 1/(1 4+ z) has a Taylor series expansion around the point z= 0.

Thus, when 0 < |z| < 1, it follows that

1. .
f(z) = ?[2—1+z—z +2t —2 42—

Har

» This is not a Maclaurin series: the first two terms are unexpected, and function
f has a singularity at z= 0.

Question Perhaps there are other interesting series to investigate?
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L aurent series

>

>

Consider an infinite power series with negative power terms

B
Z bn(z —2z0) ™",

Fi=1
; . 1 :
how to find the region of convergence? Set w = - the series
z = 20
S b
becomes Z bow™, a Taylor series in w. Suppose R’ = |lim |—~
n=1 ]
5 ]
= T ! l
exists, then »  b,w™ converges for |w| < R' & |z — zg| > i
n—1

: : |
Special cases: (i) R’ = 0 and (ii) o= 0.
(1) In the first case: the series does not converge for any z not even at z = z,.

(i1) In the second case: by virtue of the ratio test, the region of convergence is
the whole complex plane except at z = zy, thatis, |z — zo| > 0.
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L.aurent series

For the more general case (Laurent series at zg)

o0 &9
Y an(z—2z20)"+ ) bu(z—20)7",
n=0 n=1 r
principal part
suppose i = |im_ and R\ = lim exists, and RR' > 1,
Tl— 00 ﬂn—l—l — 00 b’.’l—l—l

then inside the annular domain

1
{z: E{|E—EDI{R} Y
the Laurent series is convergent. /
The annulus degenerates into |./

(i) hollow plane if R = ~ \/

£

(ii) punctured disc if R/ = oc.
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L.aurent series

1 Laurent series theorem

Let f(z) be analytic in the annulus A : Ry < |z — zg| < R, then f(z)
can be represented by the Laurent series,

-

@)= Y elz—z0)"

k=—x
which converges to f(z) throughout the annulus. The Laurent co-
efficients are given by

=_¢ : f((:) d§-‘ k=0‘:|:11:|:2‘:
2w JC (¢ — zg)k‘i‘l

where C' is any simple closed contour lying completeiy inside the
annulus and going around the point zq. ' :




L.aurent series

Remarks

1) A Laurent series defines a function f(z) in its annular region of convergence. The
Laurent series theorem states that a function analytic in an annulus can be
expanded in a Laurent series expansion.

2) Suppose f(z) is analytic in the full disc: |z — zy| < R, (without the punctured
hole), then the integrand in calculating ¢, for negative k& becomes analytic in
|z — zy| < R,.Hence,¢, = Ofork = —1,-2, ---.

The Laurent series is reduced to a Taylor series.

3) Whenk =-1, 1 ¢
c—1 = %jé:f(‘:)d@

We may find c_; by any means, so a contour integral can be evaluated without
resort to direct integration.
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L aurent series

Example. From the Maclaurin series expansion of e?, it follows that the Laurent

series expansion of e'/Z about 0 is
o0
1

el — Z

T
re=0) n=

The function el/% is analytic everywhere except at z = 0 so that the
annulus of convergence is |z| > 0. We observe

) (i 1/{n+ 1)

n—=co 1 /nl

bn—}— 1

T

1
— 5 sothatﬁzo.

Lastly, we consider ?ge”z dz, where the contour C' is |z| = 1. Since

(7
C' lies completely inside the punctured disc |z| > 0, we have

.. ik :
é‘?elfz dz = 2mi(coefficient of — in Laurent expansion) = 2

s

» By comparing the coefficients, we obtain

1;":3 Dori
yge dz:ﬂ,J n € N,

z1-"n n!




L.aurent series

Example

Find all the possible Taylor and Laurent series expansions of

1
f(z) = G —2) at zg = 0.

Specify the region of convergence (solid disc or annulus) of each of
the above series.

|z]=1

ah

\_/| o

1 lzl=2
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L.aurent series

Solution

There are two isolated singularities, namely, at z = : and z = 2.
The possible circular or annular regions of analyticity are

() |zl <1, (i) 1<]|z| <2, (i) 2| > 2.

(i) For |z] <1
zii - 1i%=i[l+§+---+(j—:)+} for |z|<1
— = (—%)11%=(—%)[1+§+---+(%)n+---] for |2 <2
o - 22 - L L6
= -3 ; {G)H_l + gn]:i—l] s

This is a Taylor series which converges inside the solid disc |z| < 1.
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L.aurent series
(it) For 1.< |2| <2
1 1

1

z—1 zl__

1

7(E) =

(iii) For |z| > 2

z—1

oC
-ngﬂ N

_+1

in
(zn—{n—l + n—+1

150

n=0

Z zn—}—l

n=>0

1 4

=

), =

n=0

valid for |z| > 1

valid for |z| < 2

valid for 1 < |z| < 2.

valid for |z| > 1

valid for |z| > 2

valid for |z| > 2.
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L.aurent series

Example

Find all possible Laurent series of

1
flz) = 5 at the point a = —1.
1—g

Solution

The function has two isolated singular points at 2z =1 and z = —1.
There exist two annular regions (i) 0 < |z 4+ 1| < 2 and (ii) |z 4+ 1| >
2 where the function is analytic everywhere inside the respective

region.
/, )\/

k4
E
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Laurent series
(o< |z41| <2
1 1
132 2(z+1) (1 - =5
B 1 X (z+4 1)F
B 2(z+1}k§[} ok

_ 1 1,1 = %
- 2(z+1)+4+8("+1)+16(z+1} L

. . . 1
The above expansion is valid provided ZT

<landz+4+1%0.

Given that 0 < |z 4+ 1| < 2, the above requirement is satisfied.

For any simple closed curve (' lying completely inside |z41| < 2
and encircling the point z = —1, we have

1 1 1
.*:_1:—_% dz = —.
2miJoy 1 — 22 2
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L.aurent series
(i) |z 41| >2
1 1

122 _<z+1>?(1—%)
k

<z+1)2 3 o G+ 1)F

since <1

2
z4+1

1 P -
_[(z+1>?+(z+1)3+(z+1>4+"']'

For any simple closed curve C5 encircling the circle: |z 41| = 2,

we have
1 j 8
Cl=—¢ d.3=0
2miJo, 1 — 22




Thank you.
Dr. Moataz El-Zekey



