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Complex sequences

� An infinite sequence of complex numbers ��, ��, ⋯	, ��, ⋯, denoted by {��}, can be 

considered as a function defined on a set of positive integers into the complex plane.

� For example, we take �� =
���

�

		so that the complex sequence is

� Convergence of complex sequences

� Given a complex sequence {��}, if for each positive quantity �, there 

exists a positive integer N such that

then the sequence is said to converge to the limt z. We write

If there is no limit, we say that the sequence diverges.



Complex sequences

� It is easy to show that

� Therefore, the study of the convergence of a complex sequence is equivalent to 

the consideration of two real sequences.

� The above theorem enables us to write

whenever we know that both limits on the right exist or the one on the left exists.



Infinite series of complex numbers

� An infinite series of complex numbers ��, ��, ⋯	, ��, ⋯	 is the infinite sum of the 

sequence {��} given by

� To study the properties of an infinite series, we define the sequence of partial sums 

{��}	by

� If the limit of the sequence {��}	converges to S, then the series is said to be 

convergent and S is its sum; otherwise, the series is divergent.

� The sum, when it exists, is unique.

� The consideration of an infinite series is relegated to that of an infinite sequence of 

partial sums.



Infinite series of complex numbers

� Hence, Σ �� is convergent if and only if Σ �� and Σ �� are convergent.

� There are many parallels with real series.

� Now if Σ �� and Σ �� are convergent, then �� → 0, �� → 0. We deduce that Σ ��
convergent ⟹ �� 	→ 	0. Of course, the converse is false!!. 

� Hence, A necessary condition for the convergence of a complex series is that

� So the terms of a convergent complex sequence are bounded: 

that is, there exists M:      |	��	| 	� 	�	for all n.



Infinite series of complex numbers

� Absolute convergence



Infinite series of complex numbers



Sequences of complex functions



Convergence of series of complex functions

Solution



Convergence of series of complex functions

� Weierstrass M-test



Convergence of series of complex functions

� Test for convergence using the M-test

Omit the first two terms since it does not affect the convergence property. 

For �	 ≥ 	3 and 1	 � 	 |�| 	� 	2, we have



Convergence of series of complex functions

Example. Show that the following the complex series is absolutely convergent 

when z is real but it becomes divergent when z is non-real.

Solution



Convergence of series of complex functions

Example. Show that the geometric series               converges to              on any

closed subdisk |�| 	≤ 	�	 � 	1	of the open unit disk |�| 	� 	1. .

Solution

To establish the convergence of the series for |�| 	≤ 	�	 � 	1, we apply the M-test. 

We have



Convergence of series of complex functions

� For convergent infinite series of complex functions, properties such as continuity and

analyticity of the continuous functions � (�) are carried over to the sum �(�).

� More precisely, suppose � (�), #	 = 	1, 2,⋯, are all continuous (analytic) in the

region of convergence, then the sum � � = is also continuous (analytic) in

the same region.

� Further, a convergent infinite series allows for termwise differentiation and

integration, that is,

� Some Stated Results



Power series

� We shall be particularly concerned with power series.

� A series of the form

where �$ and the %� are complex constants, and z is any number (variable) in a

stated region, is called a power series around the point �$.

� Given a power series there exists a non-negative real number R, R can be zero or 

infinity, such that the power series converges absolutely for |� & �$| 	� 	', and 

diverges for |�	 & 	�$| 	( 	'.

� R is called the radius of convergence.

� �	 &	�$ = 	'	is called the circle of convergence.

� The radius of convergence R is given by                          as a consequence of  the 

Ratio test, given that the limit exists.

� The geometric series                  is in fact a power series with �$ = 0, %� = 1, 

converges absolutely on |�| 	� 	1	to the analytic function 1/(1	 & 	�). Thus, its 

radius of convergence is R = 1.



Power series

� Example

Find the circle of convergence for the following power series:

Solution By the ratio test, we have

so the circle of convergence is �	 & 	* = 	1.



Power series

� Example. Find the circle of convergence for the power series:

Solution By the ratio test, we have

so the circle of convergence is the whole complex plane.

� The radius of convergence can also be found by

which is a consequence of the Root Test.

Solution By the root test, we have

so the circle of convergence is � = 	1/+.



Power series

� If a power series                                  converges at	� = ��(≠ �$)	then it

     converges (absolutely) for all � ∈ ℂ	such that	|�	 & 	�$| < |�� 	& 	�$| .

The proof now follows from the comparison test, and behavior of geometric series.

� If it diverges at some point � = ��, then it diverges at all points z that satisfy the 

inequality |�	 & 	�$| > |�� 	& 	�$| .



Power series

� Some useful results



Power series

Example. We have

By differentiating the series term-by term, it follows that

Its radius of convergence is 1.

Example. We have

By integrating the series term-by term, it follows that

Its radius of convergence is also 1.



Power series



Taylor’s Series

� A power series represents an analytic function inside its circle of convergence. 

� Can we expand an analytic function in Taylor series and how is the domain of

analyticity related to the circle of convergence?

� Taylor series theorem

Let  f be analytic everywhere inside the circle 0 ∶ 	 |	�	 & 	�$	| 	= 	 �$. Then, f  has 

the series representation (called the Taylor series of f at �$.)

which converges for all z such that | z - z0 | < r0 .

� Taylor’s series with z0 = 0 is called the Maclaurin series of f.

� Uniqueness of Taylor Series: If 

inside the circle of convergence, then the series is the Taylor series of f at �$. 



Taylor’s Series

Example. Consider the function              the Taylor series at z = 0 is given by

� The function has a singularity (i.e. the point at which the function is not analytic) at

z = 1. The maximum distance from z = 0 to the nearest singularity is one, so the

radius of convergence is one.

� Alternatively, the radius of convergence can be found by the ratio test, where

� If we integrate along the contour C inside the circle of convergence |z| < 1 from the

origin to an arbitrary point z, we obtain

The radius of convergence is again one (checked by the ratio test).



Taylor’s Series

Example. Calculating the derivatives of all orders at �$ 	= 	0	of the entire functions

+2, cos	�, sin	�, cosh	�, sinh	�, we obtain the following Maclaurin series expansions,

which are valid on |�| 	� 	∞	:



Taylor’s Series

Example. The consecutive derivatives of Log	� are 1/�, &1/��, 2/�<⋯ ; in general,

Evaluating these at z = 1, we find the Taylor series expansion

This is valid for |�	 & 	1| 	� 	1, the largest open disk centered at 1 over which Log z 

is analytic.

Example. Write 1/(9	 +	��) 	= 	1/[9(1	 & 	@)], where @	 = 	&��/9. Thus, 

as long as |@| 	� 	1; i.e., | & ��/9| 	� 	1	or |�| 	� 	3, we have 



Taylor’s Series

Example. Use partial fractions to obtain



Taylor’s Series

Example. Consider the function �(�) 	= 	 (1	 + 	2�)/(�< 	+ 	�B). We cannot find a 

Maclaurin series for f(z) since it is not analytic at z = 0. However, we can write f(z) as

Now 1/(1 + 	�) has a Taylor series expansion around the point z = 0.

Thus, when 0	 � 	 |�| 	� 	1, it follows that

� This is not a Maclaurin series: the first two terms are unexpected, and function 

f has a singularity at z = 0.

Question Perhaps there are other interesting series to investigate?



Laurent series

�

(i) In the first case: the series does not converge for any z, not even at �	 = 	 �$.

(ii) In the second case: by virtue of the ratio test, the region of convergence is  

the whole complex plane except at �	 = 	 �$, that is, |�	 & 	�$| 	( 	0.



Laurent series



Laurent series

� Laurent series theorem



Laurent series

Remarks

1) A Laurent series defines a function f(z) in its annular region of convergence. The

Laurent series theorem states that a function analytic in an annulus can be

expanded in a Laurent series expansion.

2) Suppose f(z) is analytic in the full disc: |�	 & 	�$| 	� 	'�	(without the punctured

hole), then the integrand in calculating C for negative k becomes analytic in

|�	 & 	�$| 	� 	'�. Hence, C 	= 	0	for #	 = 	&1,&2, ⋯.

The Laurent series is reduced to a Taylor series.

3) When k = −1,

We may find CD� by any means, so a contour integral can be evaluated without

resort to direct integration.



Laurent series

Example. From the Maclaurin series expansion of +2, it follows that the Laurent

series expansion of +�/2 about 0 is



Laurent series



Laurent series



Laurent series



Laurent series



Laurent series



Laurent series



Thank you.

Dr. Moataz El-Zekey


