

الفرقة: الرابعة الشعبة: الاحصاء وعلوم الحاسب المادة: : نظرية القياس الكود:(424 ر)

> التاريخ: 32 / 1 /2022 الزمن: 3 ساعات الدرجة الكلية: 90 درجة

نموذج امتحان نهائي الفصل الدراسي الاول لعام 2022-2023

Answer the following questions:

(22 Marks)

a- Let $I = \{[a,b): a,b \in \mathbb{R}, a \leq b\}, \sigma(I)$ be the smallest σ - algebra containing I and $\beta(\mathbb{R})$ be Borel σ -algebra of \mathbb{R} . Show that $\sigma(I) = \beta(\mathbb{R})$. (8 Marks)

b- Give the meaning of following: σ -algebra, an outer measure on X, Lebesgue measurable. (6 Marks)

c- Let X be a nonempty set and $\Sigma = P(X)$. Define $\mu: \Sigma \to [0, \infty)$ by

 $\mu(A) = \begin{cases} n & \text{if } A \text{ has n element} \\ \infty & \text{otherwise.} \end{cases}$

Is μ a measure space on P(X)?

(8 Marks)

<u>Q2:</u> (22 Marks)

a- Let (X, Σ, μ) be a measure space, and (A_n) is a sequence in Σ . Prove that

(10 Marks)

 $\mu\left(\bigcup_{n=1}A_n\right) \leq \sum_{n=1}\mu(A_n).$ by Let X be a set. μ an outer measure on X and E and F are μ

b- Let X be a set, μ an outer measure on X and, E and F are μ measurable subsets of X. Show that $E \cup F$ is μ measurable on X. (6 Marks)

c- Let X be a set, μ an outer measure on X and $E_1, E_2 \in M$, $E_1 \cap E_2 = \emptyset$ where M is the collection of all μ^* -measurable subsets of X. Show that

 $\mu^*(A \cap (E_1 \cup E_2)) = \mu^*(A \cap E_1) + \mu^*(A \cap E_2)$

(6 Marks)

Q3:
a- Show that every countable subset of R has outer measure zero. (22 Marks)
(6 Marks)

b- Let (X, Σ) be a measurable space and $E \in \Sigma$, $f: E \to \mathbb{R}$ and f is measurable. Show that the set $\{x \in E: f(x) \ge \alpha, \alpha \in \mathbb{R}\}$ is measurable. (6 Marks)

c- Assume that f and g are measurable real-valued function defined on a domain $E \in \Sigma$. Show that f - g, $f \cdot g$ and |f| are measurable functions. (10 Marks)

Q4: (24 Marks) a. Let (X, Σ, μ) be a measure space, φ non-negative simple functions. Show for any $A, B \subseteq X$, that

 $\int_{A \cup B} \varphi d\mu = \int_{A} \varphi d\mu + \int_{B} \varphi d\mu. \tag{6 Marks}$

b- Let (X, Σ, μ) be a measure space. For any $A \in \Sigma$ and the function $\nu: \Sigma \to [0, \infty]$ defined by

 $\nu(A) = \int_A \varphi d\mu$, Show that the function $\nu(A)$ is a measure on X. (6 Marks

c- Let f be non-negative measurable functions and c-non-negative real number. Show that

 $\int_{X} cf d\mu = c \int_{X} f d\mu.$ (6 Marks)

d- Let f and g be non-negative measurable functions and $f \leq g$. Show that

 $\int_{X} f d\mu \le \int_{X} g d\mu. \tag{6 Marks}$

مع أطيب التمنيات بالتوفيق

رئيس قسم الرياضيات: أ.د/أحمد محمد كامل طرابيه

أستاذ المقرر: د/وفاء قوطه