علوم

Damietta University
Faculty of Science
Environmental
Sciences Department

First semester January:2023 Date: 1/1/2023 Total time: 3 hours

" Final Theoretical Exam of Environmental Chemistry (308 E)"
For ³rd. year Environmental Sciences Program Students
Examiners: Dr/Mervat El-Sonbati & Dr/Khaled El-Ezaby

Answer all the following questions

Total Mark: 105

Part (I) [52½] 1½ hour

Que	estion [1] Choose the	e correct answer from th	ne following [25 marks]:			
1	If the compound is su	bjected to IR radiation	transitions in grou	nd state occur		
(a)	vibrational and rotational	(b) vibrational and electronic	(c) rotational and electronic	(d) electronic and spin		
2	The higher temperature gas- fuel mixture in AAS is					
(a)	acetylene/Oxygen	(b) acetylene/Air	(c) hydrogen/Oxygen	(d) cyanogen/oxygen		
3	is a plot of	the amount of light absorbe	d by a sample as a function of	fwavelength		
(a)	Absorption	(b) Absorption spectra	(c) Electromagnetic spectrum	(d) Electromagnetic radia		
4	Device that allows ior	ns to flow without extensive	mixing of solution in electrocl	nemical cell is		
(a)	conductivity bridge	(b) salt bridge	(c) insoluble–salt electrodes	(d) voltammeter		
5	Photoelectric cell convert					
(a)	current to light	(b) light to absorbance	(c) current to absorbance	(d) light to current		
6	The units of conducta	ince are				
(a)	ohm= seimen	(b) ohm ⁻¹ = seimen	(c) mho= ohm	(d) mho= μseimen		
7	In a galvanic cell, if	Metal (X) has $E^0 = -2.8$ and	$I(Y)$ has $E^0 = 1.8$, So			
(a)	X is anode and Y is	(b)X is cathode	(c)X is reduced and	(d) all the previous		
	cathode	and Y is anode	Y is oxidized	are correct		
8	is a	conductor that emits or colle	ects electrons in an electrolytic	c cell		
(a)	Diode	(b) Anode	(c) Cathode	(d) Electrode		

The conductance of the solution	tion depends on all the following excep-					
(a) temperature (b) par	tepends on all the following excep					
enables the determ	ination of the sum of A	(d) the size of the elec				
10 enables the determination of the sum of all organically bound carbons, therefore, a (a) COD (c) concentration of ions (d) the size of organic pollution in a matrix.						
(a) COD	D. C.	measu				
II The good	BOD (c) TOC	(1) 7				
(a) I conductance of solution is	s inversely proportional to	(d) DOC				
(a) Length (b) wid	th (c)	of electrode				
12 In the reports	(c) cross section surface area	(d) thickness				
(a) $E = E^0 - (RT/nF) \ln $ (b) $E = E^0 + R$	\rightarrow M the Nernst equation is RT/nF) In $(c)F = F^0$ (DT/	(d) thekness				
$([M]/[M^{a+}]) (b) E = E^0 + (I$	RT/nF) In $(c)E = E^0 - (RT/nF) \ln $	•••••				
([M]/[M ⁿ⁺])	(K1/nF) ln	(d) $E^0 = E + (RT/nF) \ln \frac{1}{2}$				
	[(]1VI [/](M])	(IMPTITE CO				
The light reflected by the disper	sed or grattons	$([M^{n+}]/[M])$				
(a) turbidimeter	sed or scattered particles is recorded b	у				
an galvanic cell, the reaction is	and	r (d) colorimeter				
(c) Housdon	Manager					
15 The reducing agent in the	ntaneous-required (c) spontaneous-production: $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \to \operatorname{Zn}^{2+}(aq) + (aq)$ (aq) (c) $\operatorname{Zn}^{2+}(aq)$	ced (d) none				
(a) Zn (s)	on: $Z_n(s) + Cu^{2+}(aq) \to Z_n^{2+}(aq)$	ced (d) nonspontaneous-produc				
16 Fleetwood (b) Cu ²⁺	(aq) (aq) + (Cu (s) is				
10 Electrochemistry deals with the in	(aq) (c) $Zn^{2+}(aq)$	(d) Cu (s)				
16 Electrochemistry deals with the in (a) kinetic and (b) kinetic a	terconversion between					
electrical	uild (c) the	- 11				
modi Cili	ergy chemical -	(d) electrical and				
17 A Hollow Cathode Lampie		chemical energy				
17 A Hollow Cathode Lamp is one of t	he components of					
(b)	flom					
(a) Percent transmission (b) also be	flame emission spectrometer (c) turbidin	neter (d) nephala				
		(d) hephelometer				
(0) dDSOrbano	20 1 () =	-				
The normal and most stable orbital configuration of an atom is thestate (b) absorbance (c) Percent transmission and absorbance (d) light (a) liquid (b) gaseous						
(a) liquid	an atom is the	ate				
20 The coll	(e) excite					
The cell notation for the reaction $M_{\sigma} \rightarrow M_{\sigma}^{2+}$ (d) ground						
The cell notation for the reaction $Mg \rightarrow Mg^{2+} + 2e^-$ (anode), $Al^{3+} + 3e^- \rightarrow Al$ (cathode) is Al $^{3+}(aq) \mid Al(s)$ (c) excite (d) ground (e) excite (d) ground (e) $Mg^{2+}(aq) \mid G$ (f) $Mg^{2+}(aq) \mid G$ (g) $Mg^{2+}(aq) \mid G$ (h) $Mg(s) \mid Mg^{2+}(aq) \mid G$ (g) $Mg(s) \mid Mg^{2+}(aq) \mid G$ (g) $Mg(s) \mid Mg^{2+}(aq) \mid G$ (h) $Mg(s) \mid Mg^{2+}(aq) \mid G$						
$A ^{3\tau}(aq) \mid A (s) $ (c) $Mg(s) \mid Mg^{2\tau}(aq) \mid$ (c) $Mg(s) \mid Mg^{2\tau}(aq) \mid$						
$Al^{3+}(aq) \mid Al(s)$	$AI^{3+}(aq), AI(s)$	(d) $Mg(s) Mg^{2r}(aq) /$				
		$Al^{3+}(aq) \mid Al(s)$				

_	The four step for obta	aining the specific light in	Hallow Cathode Lamp are			
	(a) ionization-sputtering- excitation-emission	(b) ionization-atomization excitation- emission	(c) ionization-sputtering- vaporization- emission	(d) ionization-sputtering excitation- atomization		
22	The anode is the elect	rode at which	occur			
	(a) reduction	(b) neutralization	(c) precipitation	(d) oxidation		
23	All the following are	limitation of atomic absorp	ption spectrophotometer excep	at .		
a)	multi-element analysis per run	(b) Time-consuming	(c) No information on chémical form of metal	(d) Destructive		
24	Turbidimeter measure	light				
(a)	scattered	(b) absorbed	(c) reflected	(d) transmitted		
25	UV / VIS radiation cau	isetransitio	on .	61		
(a)	electronic	(b) vibrational	(c) rotational	(d) spin		
	a-Give one difference 1- Flame emission as 2- Atomic and molece 3- Nephlometer and	e between each two pair nd atomic absorption specular spectra	of the following:	[4½ marks]		
l			zation of aguardant			
b. Mention the basic steps involved in atomization of aqueous solution samples?c. Deduce the equation: A= &CL						
(I. Mention the main contact the TOC in water san	omponent of TOC Anal	yzer and how can you deter			
9		nents of pH meter and h	ow it works?	[7½ marks] [4½ marks]		

Dr. Mervat A. El-Sonbati

Faculty of Science Environmental Sciences Department

Semester: Jan. 2023 Date: Sunday 1/1/2023

Final Exam in "Environmental Chemistry 308 ENV" (Part II) for 3rd. level Environmental Sciences Students Allowed Time 1½ hours

Answer All the Following Questions:

Total Mark: 52.5 Marks

Question [1]: (16 Marks)

a- Choose the correct answer for each of the following: -

[4 Marks]

- i) What are the solid particles used in chromatography called?
 - 1- The solid phase.
 - 2- The stationary phase.
 - 3- The column phase.
 - 4- The particular phase.
- ii) Chromatographic retention is due to:
 - 1- Different injection times by the auto-sampler.
 - 2- Adsorption of the analyte to the stationary phase.
 - 3- Differences in absorbance in the UV detector.
 - 4- Deviations in the flow from the pump.
- iii) What makes the liquid pass through the column in HPLC?
 - 1- The capillary forces.
 - 2- A pump.
 - 3- Gravity.
 - 4- Electricity
- iv) What is the liquid used in chromatography called?
 - 1- The pumped phase.
 - 2- The transparent phase.
 - 3- The mobile phase.
 - 4- The solution phase.
- b- Compare between each pair of the followings:
- i. Ultra-violet and the FID detectors in chromatographic techniques. [5 Marks]
- ii. Gas Chromatograph and HPLC devices, by drawing detailed schematic diagrams.

[5 Marks]

c- Comment on the properties of the eluent in column chromatographic separation techniques. [2 Marks]
 Question [2]: (16 Marks)
 a- Discuss and also use drawing to illustrate the injections techniques that commonly used in capillary GC, then mention to the advantages and drawbacks of each technique.

b- Conditioning of the column in the gas chromatographic separation is a very important process: -

i. When it is needed?

[1 Mark]

[6 Marks]

ii. How it is carried out?

[2 Marks]

c- Define the retention time in the chromatographic separation processes.

[2 Mark]

d- Write shortly on the specifications and packing of the capillary column in GasChromatograph.[5 Marks]

Question [3]: (20.5 Marks)

Deduce the order of separation of the organic compounds in the following virtual mixture by applying of HPLC technique.

- * Suggest <u>a suitable polar stationary phase</u>, and <u>a suitable eluent or mixture of eluents</u> for the separation of these compounds and give reasons for your deduction, then draw a simple chromatogram for the separated compounds:
 - i) p-aminophenol
 - ii) C₂H₅-CO-C₂H₅
- iii) HO-CH₂CH₂CH₃
- iv) p-aminotoluene
- v) CH₂=CH₂-CH₃
- vi) HOOC-CH₂CH₂-OH
- x) CH₃-CH₂-CH₂-Br
- xi) CH₃-(CH₂)₄-Cl
- xii) HO-CH2CH2-CHO

------Best Wishes-----

Dr. Khaled H. El-Ezaby