

الشعبة: إحصاء وعلوم الحاسب المتحان نهائي دور مايو ٢٠٢٣ المادة: حساب متغيرات الكود: (٤٣٣ر)

حامعة دمياط

التاريخ: الإثنين ٥/ ٦ /٢٠٢٣ الزمن: ٣ ساعات الدرجة الكلية: 90 درجة

Answer the following questions (18 Marks for each) Question no. 1 (18 Marks ,6 Marks each)

- Define Strong relative minimum for the functional?
- 2. Consider $[y(x)] = \int_0^1 (x y^2 + y'^3) dx$. Obtain δI , and $\delta^2 I$.
- 3. Find the equation of the curve between the two points (0,0), $(2\pi,0)$ and makes the following functional has extreme points.

$$I=\int_1^2 \sqrt{\frac{1+y'^2}{y}}dx$$

Question no. 2 (18 Marks, 9 each)

- 1. Prove that Euler-Lagrange equation satisfied if and only if its solution is a linear function in y'.
- 2. Discuss the functional $t[y(x)] = \int_{x_0}^{x_1} \frac{1}{x} \sqrt{1 + y'^2} dx$, which represents the time taken to move from (x_0, y_0) to (x_1, y_1) on the curve y(x).

Question no. 3 (18 Marks, 9 each)

- 1. Consider $I = \int_A \int F(x, y, z, z_x, z_y) dx dy$, where A is the area determined by the curve C .Obtain Euler-Lagrange equation for double Integration to determine the plane Z = z(x, y) which makes this integration extreme.
- 2. Obtain the extreme functions for the Integration:

$$I[y,z] = \int_0^{\pi} (y'^2 + 2yz - z'^2 - 2y^2) dx$$

Which satisfy the Boundary conditions y(0) = 0, $y(\pi) = 1$, z(0) = 0,

$$z(\pi) = -1$$

—▶Please see the 2nd paper of the exam.

Question no. 4 (18 Marks, 9 each)

- 1. What are the available two approaches to solve the conditional Extremum problem?
- 2. Find the curve y = y(x) which satisfies y(a) = y(-a) = 0 and has a length l > 2a and surround the segment $-a \le x \le a$ to give the maximum area.

Question no. 5 (18 Marks, 9 each)

1. Specify the functional field of the following functional:

$$I[y] = \int_0^2 (y'^3 + \sin^2 x) dx$$

Where y(0) = 1, y(2) = 4

2. Study if Jacobi's condition satisfies for the extreme curve of the following functional:

$$I[y] = \int_0^a (y'^2 + y^2 + x^2) dx$$

and passes by the points A(0,0), B(a,0).

مع (أطوس (السّمنياس بالنّو فيق

Prof. Dr. Ahmed M.K. Tarabia Head of Mathematics Department.