

EXAM: Final

TERM: 2

COURSE TITLE: Theory of Differential equations

PROGRAM: Mathematics

DATE: 21-6-2024

LEVEL: 3

CODE: 311 Math

MARKS: 105

DURATION: 3 hrs

DEPARTMENT OF MATHEMATICS

Marks

Answer each of the following questions:

Q1: (27 marks)

1- Define the following: Regular singular point – Stable critical point.

2- Show that the IVP $y'' = f(x, y), y(x_0) = y_0, y'(x_0) = y_1$ where f(x, y) is continuous in a domain D containing the point (x_0, y_0) , is equivalent to the integral equation $y(x) = y_0 + (x - x_0)y_1 + \int_{x_0}^{x} (x - t)f(t, y(t))dt$.

3- Speake about the importance of Lipschitz condition for the existence of a unique solution of the IVP y' = f(x, y), $y(x_0) = y_0$.

4- Show that the IVP $y' = e^{\sin(xy)} + y$, y(0) = 1 has a unique solution in the domain $D: |x| \le 1, |y-1| \le 1.$

5- State and prove Peano's existence Theorem.

Q2: (24 marks)

1- Check the linearity and homogeneity of each of the following systems:

(i)
$$x'(t) = x(t) + y(t)$$

 $y'(t) = x^2(t) - y(t)$

$$x'(t) = y(t) + t2$$
(ii)
$$y'(t) = z(t) + et$$

$$z'(t) = x(t)$$

2- Solve each of the following linear systems:

(i)
$$u' = \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} u$$

(i)
$$u' = \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} u$$
(ii)
$$X' = \begin{pmatrix} 4 & -1 & 1 \\ 2 & 5 & -1 \\ 0 & 0 & -3 \end{pmatrix} X$$

<u>5</u>

2

2

(iii)
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t \\ 0 \end{pmatrix}$$

7

5+5

3- If A is a continuous square matrix on R, prove that the system u' = A(t)u has a fundamental matrix on R.

Q3: (28 marks)

1- Determine the type and stability nature of the critical point (0,0) for the system 7

$$\frac{dx}{dt} = x + 2y, \qquad \frac{dy}{dt} = 3x + y$$

2- Investigate the stability of every critical point in each of the following cases:

(i)
$$\frac{dx}{dt} = x + x^2 + y^2, \qquad \frac{dy}{dt} = y - xy$$

(ii)
$$\frac{dx}{dt} = y^3 - x^3$$
,

(ii)
$$\frac{dx}{dt} = y^3 - x^3$$
, $\frac{dy}{dt} = -2xy^2 - 2y^3$.

$$\underline{7} \qquad \qquad (\mathbf{iii}) \ u' = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} u$$

Q4: (26 marks)

1- Determine the regular singular points of the equation:

$$x(x-1)^2y'' + (x-1)y' - y = 0$$

2- Solve the following equation in series form about x = 0:

$$2xy'' - y' + 2y = 0.$$

4- State and prove Sturm-Picone's oscillation Theorem.

5- Test the oscillation of each of the following equations:

(i)
$$y'' + \frac{2+\sin x}{x^2}y = 0$$

(i)
$$y'' + \frac{2+\sin x}{x^2}y = 0$$
 (ii) $(xy')' + (1+\cos 2x)y = 0$

With my best wishes

Professor Dr. Hassan El-Morshedy