Lecture 6 Group 15 (5A) Nitrogen Family Pnicogens Or Pnictogen



| 7N               | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>3</sup>                                                                                                                                                                                                     | [He] 2s <sup>2</sup> 2p <sup>3</sup> |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 15 <b>P</b>      | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>3</sup>                                                                                                                                                                     | [Ne] 3s <sup>2</sup> 3p <sup>3</sup> |
| 33As             | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> 4s <sup>2</sup> 4p <sup>3</sup>                                                                                                                    | [Ar] 4s <sup>2</sup> 4p <sup>3</sup> |
| <sub>51</sub> Sb | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> 4s <sup>2</sup> 4p <sup>6</sup> 4d <sup>10</sup> 5s <sup>2</sup> 5p <sup>3</sup>                                                                   | [Kr] 5s <sup>2</sup> 5p <sup>3</sup> |
| <sub>83</sub> Bi | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> 4s <sup>2</sup> 4p <sup>6</sup> 4d <sup>10</sup> 4f <sup>14</sup> 5s <sup>2</sup> 5p <sup>6</sup> 5d <sup>10</sup> 6s <sup>2</sup> 6p <sup>3</sup> | [Xe] 6s <sup>2</sup> 6p <sup>3</sup> |



### Atomic and Physical Properties of Group 15 Elements

| Property                            |                    | N                  | Р                     | As                    | Sb                              | Bi     |
|-------------------------------------|--------------------|--------------------|-----------------------|-----------------------|---------------------------------|--------|
| Atomic number                       |                    | 7                  | 15                    | 33                    | 51                              | 83     |
| Atomic mass/g mol <sup>-1</sup>     |                    | 14.01              | 30.97                 | 74.92                 | 121.75                          | 208.98 |
| Electronic configuration            | $[He]2s^{2}2p^{3}$ | $[Ne]3s^{2}3p^{3}$ | $[Ar]3d^{10}4s^24p^3$ | $[Kr]4d^{10}5s^25p^3$ | $[Xe]4f^{4}5d^{10}6s^{2}6p^{3}$ |        |
| Ionisation enthalpy                 | Ι                  | 1402               | 1012                  | 947                   | 834                             | 703    |
| $(\Delta_t H/(kJ mol^{-1}))$        | II                 | 2856               | 1903                  | 1798                  | 1595                            | 1610   |
|                                     | III                | 4577               | 2910                  | 2736                  | 2443                            | 2466   |
| Electronegativity                   |                    | 3.0                | 2.1                   | 2.0                   | 1.9                             | 1.9    |
| Covalent radius/pmª                 | 70                 | 110                | 121                   | 141                   | 148                             |        |
| Ionic radius/pm                     | 171 <sup>b</sup>   | 212 <sup>b</sup>   | 222 <sup>b</sup>      | 76°                   | 103 <sup>°</sup>                |        |
| Melting point/K                     | 63*                | 317 <sup>d</sup>   | 1089 <sup>e</sup>     | 904                   | 544                             |        |
| Boiling point/K                     | 77.2*              | $554^{d}$          | 888 <sup>f</sup>      | 1860                  | 1837                            |        |
| Density/[g cm <sup>-3</sup> (298 K) | 0.879 <sup>g</sup> | 1.823              | 5.778 <sup>h</sup>    | 6.697                 | 9.808                           |        |

#### **Electronic Configuration**.

• The valence shell electronic configuration of these elements is  $ns^2np^3$ 

#### Atomic and Ionic Radii.

- Covalent and ionic (in a particular state) radii increase in size down the group.
- There is a considerable increase in **covalent** radius from **N to P**
- However, from As to Bi only a small increase in covalent radius is observed. This is due to the presence of completely filled *d*and/or *f* orbitals in heavier members.



### Some Exceptional

- Considerable increase in covalent radius from nitrogen to phosphorus but only a small increase from arsenic to bismuth, This is due to completely filled d and f orbital's in heavier members.
- The ionization energy of group 15 elements is much greater than the group 14 elements in corresponding period, this is due to extra stability of half filled p orbitals electronic configuration and small size.

### **Anomalous properties of nitrogen**

Nitrogen differs from the rest of the members of its group due to it's:

small size,

high electronegativity,

high ionization enthalpy and,

non availability of d-orbital's.

It has an ability to form  $p\pi$ - $p\pi$  bonds with itself and hence it is inert at room temperature. Other elements if its group are singly bonded.



- Colourless, odourless, tasteless, non toxic gas
- Low molecular mass, low intermolecular forces
- Two stable isotopes (N-14, N-15).
- Low solubility in water , low freezing and boiling point
- Inert at room temperature due to high bond dissociation enthalpy







# **Nitrogen Fixation**

- The process of transforming  $N_{\rm 2}$  to other nitrogen–containing compounds.
- Atmospheric fixation (can occurs naturally)

$$\begin{split} \mathrm{N}_2(g) + \mathrm{O}_2(g) &\to 2\mathrm{NO}(g); & \Delta H^\circ = 180 \ \mathrm{kJ} \\ 2\mathrm{NO}(g) + \mathrm{O}_2(g) &\to 2\mathrm{NO}_2(g); & \Delta H^\circ = -112 \ \mathrm{kJ} \\ 3\mathrm{NO}_2(g) + \mathrm{H}_2\mathrm{O}(l) &\to 2\mathrm{HNO}_3(\mathrm{aq}) + \mathrm{NO}(g); \\ & \Delta H^\circ = -140 \ \mathrm{kJ} \end{split}$$



15

### Main Compounds of the Nitrogen

**Hydride** 

• NH<sub>3</sub>

- N<sub>2</sub>H<sub>4</sub>, NH<sub>2</sub>OH
- Ammonium salts

**Oxides** 

- NO
- $\cdot NO_2$

**Oxyacid and its salts** 

• Nitrous acid and nitrite

• Nitric acid and nitrate



# **Oxides of Nitrogen**

In its oxides nitrogen has oxidation states ranging from +1 to +5.

- 1. N<sub>2</sub>O (+1)
- 2. NO (+2)
- 3.  $N_2O_3 \& HNO_2 (+3)$
- 4.  $NO_2$  (+4)
- 5.  $N_2O_5 \& HNO_3 (+5)$
- In other compounds, nitrogen could have oxidation states of -1 to -3.
- NH<sub>2</sub>OH (-1), N<sub>2</sub>H<sub>4</sub> (-2), and NH<sub>3</sub> (-3)

### **Oxides of Group 5A Elements**

- Nitrogen: N<sub>2</sub>O, NO, N<sub>2</sub>O<sub>3</sub>, NO<sub>2</sub>, N<sub>2</sub>O<sub>4</sub>, N<sub>2</sub>O<sub>5</sub>;
- Phosphorus: P<sub>4</sub>O<sub>6</sub> & P<sub>4</sub>O<sub>10</sub>;
- Arsenic: As<sub>2</sub>O<sub>3</sub> (As<sub>4</sub>O<sub>6</sub>) & As<sub>2</sub>O<sub>5</sub>;
- Antimony: Sb<sub>2</sub>O<sub>3</sub> & Sb<sub>2</sub>O<sub>5</sub>
- Bismuth: Bi<sub>2</sub>O<sub>3</sub> & Bi<sub>2</sub>O<sub>5</sub>

## **Chlorides of Group 5A Elements**

- Nitrogen: only NCl<sub>3</sub>;
- Phosphorus: PCl<sub>3</sub> and PCl<sub>5</sub>;
- Arsenic: AsCl3 and AsCl5;
- Antimony: SbCl<sub>3</sub> and SbCl<sub>5</sub>;
- Bismuth:  $BiCl_3$
- All are molecular compounds.

#### Reactivity towards hydrogen

• All the elements of Group 15 form hydrides of the type EH<sub>3</sub>

 $N_2(g) + 3H_2(g) (773 \text{ k}) ==> 2NH_3(g); \Delta H = -46.1 \text{ kJmol}-1$ 

P<sub>4</sub> + 6H<sub>2</sub> (heat, p) ==> 4PH<sub>3</sub>

- The stability of hydrides decreases from NH<sub>3</sub> to BiH<sub>3</sub>.
- The reducing character of the hydrides increases. Ammonia is only a mild reducing agent while BiH<sub>3</sub> is the strongest reducing agent amongst all the hydrides.
- Basicity also decreases in the order  $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ .

20







# Nitric acid



In the laboratory, nitric acid is prepared by heating  $KNO_3$  or NaNO3 and concentrated  $H_2SO_4$  in a glass retort:

#### $NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3$

On a large scale it is prepared mainly by Ostwald's process. This method is based upon catalytic oxidation of  $NH_3$  by atmospheric oxygen.

 $4\mathrm{NH}_{3}(g) + 5\mathrm{O}_{2}(g) \xrightarrow{\mathrm{Pt}/\mathrm{Rh}\,\mathrm{gauge\,catalyst}}{500\,\mathrm{K},\,9\,\mathrm{bar}} 4\mathrm{NO}(g) + 6\mathrm{H}_{2}\mathrm{O}(g)$ (from air)

Nitric oxide thus formed combines with oxygen giving NO<sub>2</sub>.

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Nitrogen dioxide so formed, dissolves in water to give HNO<sub>3</sub>.

 $3NO_2(g) + H_2O(1) \rightarrow 2HNO_3(aq) + NO(g)$ 







# Phosphine

Phosphine is prepared by the reaction of  ${\bf calcium\ phosphide\ }$  with water or dilute  ${\bf HCI}$ 

$$Ca_{3}P_{2} + 6 H_{2}O \rightarrow 3 Ca(OH)_{2} + 2 PH_{3}$$
$$Ca_{3}P_{2} + 6 HCI \rightarrow 3 CaCl_{2} + 2 PH_{3}$$

In the laboratory, it is prepared by heating white phosphorus with **conc. NaOH** solution in an inert atmosphere of CO2.

 $P_4$  + 3 NaOH +  $3H_2O \rightarrow PH_3$  + 3  $KH_2PO_4$ 

 $PH_4I + KOH \rightarrow KI + H_2O + PH_3$ 

(phosphonium iodide)

28





# **Oxides of Phosphorus**

**Reaction of white phosphorus with oxygen:** 

- 1.  $P_4(s) + 3O_2(g) \rightarrow P_4O_6(l); (\text{o.s. of } P = +3)$
- 2.  $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s); (0.s. of P = +5)$

**Reactions of phosphorus oxides with water:** 

- 1.  $P_4O_6(l) + 6H_2O(l) \rightarrow 4H_3PO_3(aq);$
- 2.  $P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq);$