
Visual C# 2012 How to Program

 Polymorphism enables you to write apps that process
objects that share the same base class in a class
hierarchy as if they were all objects of the base class.

 Polymorphism promotes extensibility.

 If class Rectangle is derived from class Quadrilateral,
then a Rectangle is a more specific version of a
Quadrilateral.

 Any operation that can be performed on a Quadrilateral
object can also be performed on a Rectangle object.

 These operations also can be performed on other
Quadrilaterals, such as Squares, Parallelograms
and Trapezoids.

 The polymorphism occurs when an app invokes a method
through a base-class variable.

 As another example, suppose we design a video game that
manipulates objects of many different types, including objects
of classes Martian, Venusian, Plutonian,
SpaceShip and LaserBeam.

 Each class inherits from the common base class
SpaceObject, which contains method Draw.

 A screen-manager app maintains a collection (e.g., a
SpaceObject array) of references to objects of the various
classes.

 To refresh the screen, the screen manager periodically sends
each object the same message—namely, Draw, while object
responds in a unique way.

 In a method call on an object, the type of the actual referenced object,
not the type of the reference, determines which method is called.

 An object of a derived class can be treated as an object of its base class.
 A base-class object is not an object of any of its derived classes.
 The is-a relationship applies from a derived class to its direct and

indirect base classes, but not vice versa.

 The compiler allows the assignment of a base-class reference to
a derived-class variable if we explicitly cast the base-class
reference to the derived-class type.

 If an app needs to perform a derived-class-specific operation on
a derived-class object referenced by a base-class variable, the
app must first cast the base-class reference to a derived-class
reference through a technique known as downcasting. This
enables the app to invoke derived-class methods that are not in
the base class.

 Fig. 12.1 demonstrates three ways to use base-class and derived-
class variables.

 When the compiler encounters a virtual method call made through a
variable, the compiler checks the variable’s class type to determines if
the method can be called.

 At execution time, the type of the object to which the variable refers
determines the actual method to use.

 Abstract classes, or abstract base classes cannot be
used to instantiate objects.

 Abstract base classes are too general to create real
objects—they specify only what is common among
derived classes.

Purpose of an Abstract Class
 Classes that can be used to instantiate objects are

called concrete classes.
 Concrete classes provide the specifics that make it

reasonable to instantiate objects.

Creating an Abstract Class
 An abstract class normally contains one or more abstract methods,

which have the keyword abstract in their declaration.
 A class that contains abstract methods must be declared as an abstract

class even if it contains concrete (non-abstract) methods.
 Abstract methods do not provide implementations.

Abstract Proper ties
 Abstract property declarations have the form:

public abstract PropertyType MyProperty
{

get;
set;

} // end abstract property

 An abstract property omits implementations for the get
accessor and/or the set accessor.

 Concrete derived classes must provide implementations for
every accessor declared in the abstract property.

Constructors and static Methods Cannot be
Abstract
 Constructors and static methods cannot be

declared abstract.

 We can use abstract base classes to declare variables
that can hold references to objects of any concrete
classes derived from those abstract classes.

 You can use such variables to manipulate derived-
class objects polymorphically and to invoke static
methods declared in those abstract base classes.

 In this section, we create an enhanced employee hierarchy to
solve the following problem:

 A company pays its employees on a weekly basis. The employees are of
four types: Salaried employees are paid a fixed weekly salary regardless
of the number of hours worked, hourly employees are paid by the hour
and receive "time-and-a-half" overtime pay for all hours worked in
excess of 40 hours, commission employees are paid a percentage of their
sales, and salaried-commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company has
decided to reward salaried-commission employees by adding 10% to
their base salaries. The company wants to implement an app that
performs its payroll calculations polymorphically.

 We use abstract class Employee to represent the general concept of an
employee.

 SalariedEmployee, CommissionEmployee and HourlyEmployee
extend Employee.

 Class BasePlusCommissionEmployee—which extends
CommissionEmployee—represents the last employee type.

 The UML class diagram in Fig. 12.2 shows the inheritance
hierarchy for our polymorphic employee payroll app.

 Class Employee provides methods Earnings and
ToString, in addition to the properties that manipulate
Employee’s instance variables.

 Each earnings calculation depends on the employee’s class, so
we declare Earnings as abstract.

 The app iterates through the array and calls method
Earnings for each Employee object. These method calls
are processed polymorphically.

 Each derived class overrides method ToString to create a
string representation of an object of that class.

 The diagram in Fig. 12.3 shows each of the five
classes in the hierarchy down the left side and
methods Earnings and ToString across the top.

 The Employee class’s declaration is shown in
Fig. 12.4.

 The SalariedEmployee class’s declaration is shown
in Fig. 12.5.

 The HourlyEmployee class’s declaration is shown in
Fig. 12.6.

 The CommissionEmployee class’s declaration is
shown in Fig. 12.7.

 Class BasePlusCommissionEmployee
(Fig. 12.8) extends class CommissionEmployee
and therefore is an indirect derived class of class
Employee.

 The app in Fig. 12.9 tests our Employee hierarchy.

 You can avoid a potential InvalidCastException by
using the as operator to perform a downcast rather than a cast
operator.
 If the downcast is invalid, the expression will be null instead of throwing an

exception.

 Method GetType returns an object of class Type
(of namespace System), which contains information about the
object’s type, including its class name, the names of its
methods, and the name of its base class.

 The Type class’s ToString method returns the class name.

12.5.7 Summary of the Allowed Assignments Between
Base-Class and Derived-Class Variables

• Assigning a base-class reference to a base-class variable is
straightforward.

• Assigning a derived-class reference to a derived-class variable is
straightforward.

• Assigning a derived-class reference to a base-class variable is safe,
because the derived-class object is an object of its base class.
However, this reference can be used to refer only to base-class
members.

• Attempting to assign a base-class reference to a derived-class variable
is a compilation error. To avoid this error, the base-class reference
must be cast to a derived-class type explicitly.

	Chapter 12�OOP: Polymorphism, Interfaces and Operator Overloading
	Slide Number 2
	Slide Number 3
	12.1 Introduction
	12.2 Polymorphism Examples
	12.2 Polymorphism Examples (Cont.)
	Slide Number 7
	12.3 Demonstrating Polymorphic Behavior
	12.3 Demonstrating Polymorphic Behavior (Cont.)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	12.3 Demonstrating Polymorphic Behavior (Cont.)
	12.4 Abstract Classes and Methods
	12.4 Abstract Classes and Methods (Cont.)
	12.4 Abstract Classes and Methods (Cont.)
	12.4 Abstract Classes and Methods (Cont.)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	12.4 Abstract Classes and Methods (Cont.)
	12.5 Case Study: Payroll System Using Polymorphism
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide Number 27
	12.5.1 Creating Abstract Base Class Employee
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	12.5.2 Creating Concrete Derived Class SalariedEmployee
	Slide Number 34
	Slide Number 35
	Slide Number 36
	12.5.3 Creating Concrete Derived Class HourlyEmployee
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	12.5.4 Creating Concrete Derived Class CommissionEmployee
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	12.5.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	Slide Number 48
	Slide Number 49
	Slide Number 50
	12.5.6 Polymorphic Processing, Operator is and Downcasting
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	12.5.6 Polymorphic Processing, Operator is and Downcasting (Cont.)
	12.5.6 Polymorphic Processing, Operator is and Downcasting (Cont.)

