Chapter 12
OOP: Polymorphism, Interfaces and

Operator Overloading
Visual C# 2012 How to Program

OBJECTIVES

In this chapter you'll learn:

m How polymorphism enables you to “program in the general” and make systems
extensible.

m To use overridden methods to effect polymorphism.
m To create abstract classes and methods.

m o determine an object’s type at execution time.

m To create sealed methods and classes.

m To declare and implement interfaces.

m To overload operators to enable them to manipulate objects.

12.1
12.2
12.3
12.4
12.5

Introduction

Polymorphism Examples
Demonstrating Polymorphic Behavior
Abstract Classes and Methods

Case Study: Payroll System Using Polymorphism

12.5.1 Creating Abstract Base Class Employee

12.5.2 Creating Concrete Derived Class SalariedEmployee

12.5.3 Creating Concrete Derived Class HourTyEmployee

12.5.4 Creating Concrete Derived Class CommissionEmployee

12.5.5 Creating Indirect Concrete Derived Class BasePTusCommission-EmpTloyee

12.5.6 Polymorphic Processing, Operator is and Downcasting

12.5.7 Summary of the Allowed Assignments Between Base-Class and Derived-Class
Variables

<[>
12.1 Introduction

» Polymorphism enables you to write apps that process
objects that share the same base class in a class
hierarchy as if they were all objects of the base class.

» Polymorphism promotes extensibility.

12.2 Polymorphism Examples

» If class Rectangle is derived from class Quadri lateral,
then a Rectangl e is a more specific version of a
Quadrilateral.

» Any operation that can be performed on a Quadri lateral
object can also be performed on a Rectangl e object.

» These operations also can be performed on other
Quadrilaterals, such as Squares, Paral lelograms
and Trapezoids.

» The polymorphism occurs when an app invokes a method
through a base-class variable.

12.2 Polymorphism Examples (Cont.)

» As another example, suppose we design a video game that
manipulates objects of many different types, including objects
of classes Martian, Venusian, Plutonian,
SpaceShip and LaserBeanm.

» Each class inherits from the common base class
SpaceObject, which contains method Draw.

» A screen-manager app maintains a collection (e.g., a
SpaceObject array) of references to objects of the various
classes.

» To refresh the screen, the screen manager periodically sends
each object the same message—namely, Draw, while object
responds in a unigue way.

Software Engineering Observation 12.1

Polymorphism promotes extensibility: Software that
invokes polymorphic behavior is independent of the
object types to which messages are sent. New object
types that can respond to existing method calls can be
incorporated into a system without requiring
modification of the base system. Only client code that
instantiates new objects must be modified to
accommodate new types.

12.3 Demonstrating Polymorphic

Behavior

» In a method call on an object, the type of the actual referenced object,

not the type of t
» An object of a c

ne reference, determines which method is called.
erived class can be treated as an object of its base class.

» A base-class obj

ect Is not an object of any of its derived classes.

» The /s-arelationship applies from a derived class to its direct and
Indirect base classes, but not vice versa.

12.3 Demonstrating Polymorphic
Behavior (Cont.)

» The compiler allows the assignment of a base-class reference to
a derived-class variable 7//we explicitly cast the base-class
reference to the derived-class type.

» If an app needs to perform a derived-class-specific operation on
a derived-class object referenced by a base-class variable, the
app must first cast the base-class reference to a derived-class
reference through a technique known as downcasting. This
enables the app to invoke derived-class methods that are not in
the base class.

» Fig. 12.1 demonstrates three ways to use base-class and derived-
class variables.

1 // Fig. 12.1: PolymorphismTest.cs

2 // Assighing base-class and derived-class references to base-class and
3 // derived-class variables.

4 using System;

5

6 public class PolymorphismTest

7 {

8 public static void Main(string[] args)

9 {

10 // assign base-class reference to base-class variable

11 CommissionEmployee commissionEmployee = new CommissionEmployee(
12 "Sue", "Jones", '222-22-2222'", 10000.00M, .06M);

13

14 // assign derived-class reference to derived-class variable

15 BasePlusCommissionEmployee basePlusCommissionEmployee =

16 new BasePlusCommissionEmployee("Bob", "Lewis',

17 "333-33-3333", 5000.00M, .04M, 300.00M);

18

Fig. 12.1 | Assigning base-class and derived-class references to base-class and
derived-class variables. (Part | of 5.)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// invoke ToString and Earnings on base-class object

// using base-class variable

Console.WriteLine("{0} {1}:\nm\n{2}\n{3}: {4:C¥\n",
"Call CommissionEmployee's ToString and Earnings methods ",
"with base-class reference to base class object",
commissionEmployee.ToString(),
"earnings", commissionEmployee.Earnings());

// invoke ToString and Earnings on derived-class object

// using derived-class variable

Console.WriteLine("0} {1}:\n\n{i2¥\ni{3}: {4:C}\n"",
"Call BasePlusCommissionEmployee's ToString and Earnings ",
"methods with derived class reference to derived-class object”,
basePlusCommissionEmployee.ToString(),
"earnings”, basePlusCommissionEmployee.Earnings());

Fig. 12.1 | Assigning base-class and derived-class references to base-class and
derived-class variables. (Part 2 of 5.)

35 // invoke ToString and Earnings on derived-class object

36 // using base-class variable

37 CommissionEmployee commissionEmployee2 =

38 basePlusCommissionEmployee;

39 Console.WriteLine("§0} {1}:\n\ni2}\n{3}: {4:C}",

40 "Call BasePlusCommissionEmployee's ToString and Earnings ",
41 "with base class reference to derived-class object"”,

42 commissionEmployee2.ToString(), "earnings',

43 commissionEmployee?2.Earnings());

44 } // end Main

45 } // end class PolymorphismTest

Fig. 12.1 | Assigning base-class and derived-class references to base-class and
derived-class variables. (Part 3 of 5.)

Call CommissionEmployee's ToString and Earnings methods with base class ref-
erence to base class object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $10,000.00

commission rate: 0.06

earnings: $600.00

Call BasePlusCommissionEmployee's ToString and Earnings methods with derived
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

earnings: $500.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and
derived-class variables. (Part 4 of 5.)

Call BasePlusCommissionEmployee's ToString and Earnings methods with base
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

earnings: $500.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and
derived-class variables. (Part 5 of 5.)

12.3 Demonstrating Polymorphic =
Behavior (Cont.)

» When the compiler encounters a virtual method call made through a
variable, the compiler checks the variable’s class type to determines if
the method can be called.

» At execution time, the type of the obyject to which the variable refers
determines the actual method to use.

12.4 Abstract Classes and Methods

» Abstract classes, or abstract base classes cannot be
used to Instantiate objects.

» Abstract base classes are too general to create real
objects—they specify only what is common among
derived classes.

Purpose of an Abstract Class

» Classes that can be used to instantiate objects are
called concrete classes.

» Concrete classes provide the specifics that make it
reasonable to instantiate objects.

12.4 Abstract Classes and Methods
(Cont.)

Creating an Abstract Class

» An abstract class normally contains one or more abstract methods,
which have the keyword abstract in their declaration.

» A class that contains abstract methods must be declared as an abstract
class even if it contains concrete (non-abstract) methods.

» Abstract methods do not provide implementations.

12.4 Abstract Classes and Methods
(Cont.)

Abstract Properties

» Abstract property declarations have the form:

public abstract PropertyType MyProperty

{
get;
set;

} // end abstract property

» An abstract property omits implementations for the get
accessor and/or the set accessor.

» Concrete derived classes must provide implementations for
every accessor declared in the abstract property.

12.4 Abstract Classes and Methods Eli3
(Cont.)

Constructors and static Methods Cannot be
Abstract

» Constructors and static methods cannotbe
declared abstract.

Software Engineering Observation 12.2

An abstract class declares common attributes and
behaviors of the various classes that inherit from it,
either directly or indirectly, in a class hierarchy. An
abstract class typically contains one or more abstract
methods or properties that concrete derived classes must
override. The instance variables, concrete methods and
concrete properties of an abstract class are subject to the
normal rules of inheritance.

Common Programming Error 12.1

Attempting to instantiate an object of an abstract class is
a compilation error.

Common Programming Error 12.2

Failure to implement a base class’s abstract methods and
properties in a derived class is a compilation error unless
the derived class is also declared abstract.

12.4 Abstract Classes and Methods
(Cont.)

» We can use abstract base classes to declare variables
that can hold references to objects of any concrete
classes derived from those abstract classes.

» You can use such variables to manipulate derived-
class objects polymorphically and to invoke static
methods declared in those abstract base classes.

12.5 Case Study: Payroll System Using
Polymorphism

>

In this section, we create an enhanced employee hierarchy to
solve the following problem:

A company pays its employees on a weekly basis. The employees are of
four types: Salaried employees are paid a fixed weekly salary regardless
of the number of hours worked, hourly employees are pard by the hour
and receive "time-ana-a-half” overtime pay for all hours worked in
excess of 40 hours, commission employees are paid a percentage of their
sales, and salaried-commission employees receive a base salary plus a
percentage of their sales. For the current pay perioad, the company has
aecided to reward salaried-commission employees by adding 10% to
their base salaries. The company wants to implement an app that
performs its payroll calculations polymorphically.

12.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» We use abstract class Employee to represent the general concept of an
employee.

» SalaritedEmployee, CommissionEmployee and HourlyEmployee
extend Employee.

» Class BasePlusCommissionEmp loyee—which extends
CommissionEmployee—represents the last employee type.

12.5 Case Study: Payroll System Using BN
Polymorphism (Cont.)

» The UML class diagram in Fig. 12.2 shows the inheritance
hierarchy for our polymorphic employee payroll app.

Employee

AN

SalariedEmployee CommissionEmployee HourlyEmployee

?

BasePlusCommissionEmployee

Fig. 12.2 | Employee hierarchy UML class diagram.

12.5.1 Creating Abstract Base Class
Employee

» Class Employee provides methods Earnings and
ToString, in addition to the properties that manipulate
Employee’s instance variables.

» Each earnings calculation depends on the employee’s class, so
we declare Earnings as abstract.

» The app iterates through the array and calls method
Earnings for each Employee object. These method calls
are processed polymorphically.

» Each derived class overrides method ToString to create a
string representation of an object of that class.

12.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» The diagram in Fig. 12.3 shows each of the five
classes in the hierarchy down the left side and
methods Earnings and ToString across the top.

» The Employee class’s declaration Is shown in
Fig. 12.4.

Employee

Salaried-
Employee

Hourly-
Employee

Commission-
Employee

BasePlus-
Commission-
Employee

Earnings

abstract

weeklySalary

If hours <= 40
wage * hours
If hours > 40
40 * wage +
(hours - 40) *
wage * 1.5

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

ToString

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage

hours worked: hours

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales

commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales

commission rate: commissionRate

base salary: baseSalary

1 // Fig. 12.4: Employee.cs

2 // Employee abstract base class.

3 public abstract class Employee

4 {

5 // read-only property that gets employee's first name

6 public string FirstName { get; private set; }

7

8 // read-only property that gets employee's last name

9 public string LastName { get; private set; }

10

11 // read-only property that gets employee's social security number
12 public string SocialSecurityNumber { get; private set; }
i3

14 // three-parameter constructor

15 public Employee(string first, string last, string ssn)
16 {

17 FirstName = first;

18 LastName = Tast;

19 SocialSecurityNumber = ssn;
20 } // end three-parameter Employee constructor
21

Fig. 12.4 | Employee abstract base class. (Part | of 2.)

22 // return string representation of Employee object, using properties

23 public override string ToString()

24 {

25 return string.Format("{0} {l}\nsocial security number: {2}",
26 FirstName, LastName, SocialSecurityNumber);

27 } // end method ToString

28

29 // abstract method overridden by derived classes

30 public abstract decimal Earnings(); // no implementation here

31 1} // end abstract class Employee

Fig. 12.4 | Employee abstract base class. (Part 2 of 2.)

12.5.2 Creating Concrete Derived Class e

SalariedEmployee

» The SalariedEmp loyee class’s declaration is shown
In Fig. 12.5.

I // Fig. 12.5: SalariedEmployee.cs

2 // SalariedEmployee class that extends Employee.

3 using System;

4

5 public class SalariedEmployee : Employee

6 {

7 private decimal weeklySalary;

8

9 // four-parameter constructor

10 public SalariedEmployee(string first, string last, string ssn,
11 decimal salary) : base(first, last, ssn)

12 {

13 WeeklySalary = salary; // validate salary via property
14 } // end four-parameter SalariedEmployee constructor

15

Fig. 12.5 | SalariedEmpTloyee class that extends Employee. (Part | of 3.)

16 // property that gets and sets salaried employee's salary

17 public decimal WeeklySalary

I8 {

19 get

20 {

21 return weeklySalary;

22 } // end get

23 set

24 {

25 if (value >= 0) // validation

26 weeklySalary = value;

27 else

28 throw new ArgumentOutOfRangeException("WeeklySalary",
29 value, '"WeeklySalary must be >= 0");
30 } // end set

31 } // end property WeeklySalary

32

33 // calculate earnings; override abstract method Earnings in Employee
34 public override decimal Earnings()

35 {

36 return WeeklySalary;

37 } // end method Earnings

38

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 2 of 3.)

39 // return string representation of SalariedEmployee object

40 public override string ToString()

41 {

42 return string.Format("salaried employee: {0}\n{l}: {2:C}",
43 base.ToString(), "weekly salary', WeeklySalary);

44 } // end method ToString

45 1} // end class SalariedEmployee

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 3 of 3.)

12.5.3 Creating Concrete Derived Class b

HourlyEmployee

» The HourlyEmp loyee class’s declaration Is shown in
Fig. 12.6.

I // Fig. 12.6: HourlyEmployee.cs

2 // HourlyEmployee class that extends Employee.

3 using System;

4

5 public class HourlyEmployee : Employee

6 {

7 private decimal wage; // wage per hour

8 private decimal hours; // hours worked for the week

9

10 // five-parameter constructor
11 public HourlyEmployee(string first, string last, string ssn,
12 decimal hourlyWage, decimal hoursWorked)
13 : base(first, last, ssn)
14 {
15 Wage = hourlyWage; // validate hourly wage via property
16 Hours = hoursWorked; // validate hours worked via property
17 } // end five-parameter HourlyEmployee constructor
18

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part | of 4.)

19 // property that gets and sets hourly employee's wage

20 public decimal Wage

21 {

22 get

23 {

24 return wage;

25 } // end get

26 set

27 {

28 if (value >= 0) // validation

29 wage = value;

30 else

31 throw new ArgumentOutOfRangeException('"Wage",
32 value, "Wage must be >= 0");
33 } // end set

34 } // end property Wage

35

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 2 of 4.)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

// property that gets and sets hourly employee's hours
public decimal Hours

{
get
{
return hours;
} // end get
set
{

if (value >= 0 & value <= 168) // validation
hours = value;
else
throw new ArgumentOutOfRangeException("Hours™,
value, "Hours must be >= 0 and <= 168");
} // end set
} // end property Hours

// calculate earnings; override Employee’s abstract method Earnings
public override decimal Earnings()
{
if (Hours <= 40) // no overtime
return Wage * Hours;
else
return (40 * Wage) + ((Hours - 40) * Wage * 1.5M);
} // end method Earnings

Fig. 12.6 | HourlyEmpTloyee class that extends Employee. (Part 3 of 4.)

61

62 // return string representation of HourlyEmployee object

63 public override string ToString()

Y| {

65 return string.Format(

66 "hourly employee: {0}\n{l}: {2:C}; {3}: {4:F2}",

67 base.ToString(), "hourly wage', Wage, "hours worked"”, Hours);
68 } // end method ToString

69 1} // end class HourlyEmployee

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 4 of 4.)

<>
12.5.4 Creating Concrete Derived Class ——

commissionEmployee

» The CommissionEmp loyee class’s declaration Is
shown in Fig. 12.7.

CO~NOUNDE WN =

10
11
12
13
14
15
16
17

// Fig. 12.7: CommissionEmployee.cs
// CommissionEmployee class that extends Employee.
using System;

public class CommissionEmployee : Employee

{

private decimal grossSales; // gross weekly sales
private decimal commissionRate; // commission percentage

// five-parameter constructor

public CommissionEmployee(string first, string last, string ssn,
decimal sales, decimal rate) : base(first, last, ssnh)

{
GrossSales = sales; // validate gross sales via property
CommissionRate = rate; // validate commission rate via property

} // end five-parameter CommissionEmployee constructor

Fig. 12.7 | CommissionEmpTloyee class that extends Employee. (Part | of 4.)

18 // property that gets and sets commission employee's gross sales

19 public decimal GrossSales

20 {

21 get

22 {

23 return grossSales;

24 } // end get

25 set

26 {

27 if (value >= 0)

28 grossSales = value;

29 else

30 throw new ArgumentOutOfRangeException(
31 "GrossSales", value, '"GrossSales must be >= 0");
32 } // end set

33 } // end property GrossSales

34

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 2 of 4.)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// property that gets and sets commission employee's commission rate
public decimal CommissionRate

{
get
{
return commissionRate;
} // end get
set
{

if (value > 0 && value <1)
commissionRate = value;
else
throw new ArgumentOutOfRangeException("CommissionRate’,
value, "CommissionRate must be > 0 and < 1");
} // end set
} // end property CommissionRate

// calculate earnings; override abstract method Earnings in Employee
public override decimal Earnings()
{
return CommissionRate * GrossSales;
} // end method Earnings

Fig. 12.7 | CommissionEmpTloyee class that extends Employee. (Part 3 of 4.)

58 // return string representation of CommissionEmployee object

59 public override string ToString()

60 {

61 return string.Format("{0}: {1}\n{2}: {3:C}\ni{4}: {5:F2}",

62 "commission employee", base.ToString(),

63 "gross sales', GrossSales, "commission rate”, CommissionRate);
64 } // end method ToString

65 1} // end class CommissionEmployee

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 4 of 4.)

12.5.5 Creating Indirect Concrete

Derived Class
BasePlusCommissionEmployee

» Class BasePlusCommissionEmployee
(Fig. 12.8) extends class CommissionEmployee
and therefore iIs an indirect derived class of class
Employee.

<>

I // Fig. 12.8: BasePlusCommissionEmployee.cs

2 // BasePlusCommissionEmployee class that extends CommissionEmployee.
3 using System;

4

5 public class BasePlusCommissionEmployee : CommissionEmployee

6 {

7 private decimal baseSalary; // base salary per week

8

9 // six-parameter constructor

10 public BasePlusCommissionEmployee(string first, string last,
11 string ssn, decimal sales, decimal rate, decimal salary)
12 : base(first, last, ssn, sales, rate)
13 {
14 BaseSalary = salary; // validate base salary via property
15 } // end six-parameter BasePlusCommissionEmployee constructor
16

Fig. 12.8 | BasePlusCommissionEmployee class that extends
CommissionEmployee. (Part | of 3.)

17
8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// property that gets and sets
// base-salaried commission employee's base salary
public decimal BaseSalary

{
get
{
return baseSalary;
} // end get
set
{

if (value >= 0)
baseSalary = value;
else
throw new ArgumentOutOfRangeException("BaseSalary",
value, '"BaseSalary must be >= 0");
} // end set
} // end property BaseSalary

// calculate earnings; override method Earnings in CommissionEmployee
public override decimal Earnings()
{
return BaseSalary + base.Earnings();
} // end method Earnings

Fig. 12.8 | BasePlusCommissionEmployee class that extends
CommissionEmployee. (Part 2 of 3.)

40

41 // return string representation of BasePlusCommissionEmployee object
42 public override string ToString()

43 {

44 return string.Format("base-salaried {0}; base salary: {1:C}",

45 base.ToString(), BaseSalary);

46 } // end method ToString

47 1} // end class BasePlusCommissionEmployee

Fig. 12.8 | BasePlusCommissionEmployee class that extends
CommissionEmployee. (Part 3 of 3.)

12.5.6 Polymorphic Processing, R
Operator 1S and Downcasting
» The app In Fig. 12.9 tests our Employee hierarchy.

1 // Fig. 12.9: PayrollSystemTest.cs

2 // Employee hierarchy test app.

3 using System;

4

5 public class PayrollSystemTest

6 {

7 public static void Main(string[] args)

8 {

9 // create derived-class objects

10 SalariedEmployee salariedEmployee =

11 new SalariedEmployee("John', "Smith', "111-11-1111", 800.00M);
12 HourlyEmployee hourlyEmployee =

13 new HourlyEmployee("Karen', "Price”,

14 "222-22-2222", 16.75M, 40.0M);

15 CommissionEmployee commissionEmployee =

16 new CommissionEmployee("Sue', "Jones',

17 "333-33-3333", 10000.00M, .06M);

18 BasePTusCommissionEmployee basePlusCommissionEmployee =
19 new BasePlusCommissionEmployee("Bob'", "Lewis",
20 "444-44-4444", 5000.00M, .04M, 300.00M);
21
22 Console.WriteLine("Employees processed individually:\n");
23

Fig. 12.9 | Employee hierarchy test app. (Part | of 6.)

24 Console.WriteLine("{0}\nearned: {1:C}\n",

25 salariedEmployee, salariedEmployee.Earnings());

26 Console.WriteLine("{0}\nearned: {1:C}\n",

27 hourlyEmployee, hourlyEmployee.Earnings());

28 Console.WriteLine("{0}\nearned: {1:C}\n",

29 commissionEmployee, commissionEmployee.Earnings());
30 Console.WriteLine("{0}\nearned: {1:C}\n",

31 basePlusCommissionEmployee,

32 basePlusCommissionEmployee.Earnings());

33

34 // create four-element Employee array

35 Employee[] employees = new Employee[4];

36

37 // initialize array with Employees of derived types

38 employees[0] = salariedEmployee;

39 employees[1] = hourlyEmployee;

40 employees[2] = commissionEmployee;

41 employees[3] = basePlusCommissionEmployee;

42

43 Console.WriteLine("Employees processed polymorphically:\n");
44

45 // generically process each element in array employees
46 foreach (Employee currentEmployee in employees)

47 {

48 Console.WriteLine(currentEmployee); // invokes ToString

Fig. 12.9 | Employee hierarchy test app. (Part 2 of 6.)

49

50 // determine whether element is a BasePlusCommissionEmployee
51 if (currentEmployee is BasePlusCommissionEmployee)
52 {

53 // downcast Employee reference to

54 // BasePlusCommissionEmployee reference

55 BasePlusCommissionEmployee employee =

56 (BasePlusCommissionEmployee) currentEmployee;
57

58 employee.BaseSalary *= 1.10M;

59 Console.WritelLine(

60 "new base salary with 10% +increase is: {0:C}",
61 employee.BaseSalary);

62 } // end if

63

64 Console.WritelLine(

65 "earned {0:C}\n", currentEmployee.Earnings());
66 } // end foreach

67

68 // get type name of each object in employees array

69 for (int j = 0; j < employees.Length; j++)

70 Console.WriteLine("Employee {0} 1is a {1}, 7,

71 employees[j].GetType(Q));

72 } // end Main

73 1} // end class PayrollSystemTest

Fig. 12.9 | Employee hierarchy test app. (Part 3 of 6.)

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00

commission rate: 0.06

earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: $5,000.00

commission rate: 0.04; base salary: $300.00
earned: $500.00

Fig. 12.9 | Employee hierarchy test app. (Part 4 of 6.)

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

Fig. 12.9 | Employee hierarchy test app. (Part 5 of 6.)

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00

commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: $5,000.00

commission rate: 0.04; base salary: $300.00
hew base salary with 10% increase is: $330.00
earned $530.00

Employee 0 is a SalariedEmployee

Employee 1 is a HourlyEmployee

Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 12.9 | Employee hierarchy test app. (Part 6 of 6.)

Common Programming Error 12.3

Assigning a base-class variable to a derived-class
variable (without an explicit downcast) i1s a compilation

CITOI.

Software Engineering Observation 12.3

If at execution time the reference to a derived-class
object has been assigned to a variable of one of its direct
or indirect base classes, it’s acceptable to cast the
reference stored in that base-class variable back to a
reference of the derived-class type. Before performing
such a cast, use the is operator to ensure that the object
1s indeed an object of an appropriate derived-class type.

12.5.6 Polymorphic Processing,
Operator 1S and Downcasting (Cont.)

» You can avoid a potential Inval 1dCastException by
using the as operator to perform a downcast rather than a cast

operator.

= |f the downcast is invalid, the expression will be null instead of throwing an
exception.

» Method GetType returns an object of class Type
(of namespace System), which contains information about the
object’s type, including its class name, the names of its
methods, and the name of its base class.

» The Type class’s ToStr1ng method returns the class name.

12.5.6 Polymorphic Processing, Operator 1S
and Downcasting (Cont.)

12.5.7 Summary of the Allowed Assignments Between
Base-Class and Derived-Class Variables

 Assigning a base-class reference to a base-class variable is
straightforward.

 Assigning a derived-class reference to a derived-class variable is
straightforward.

» Assigning a derived-class reference to a base-class variable is safe,
because the derived-class object /s an object of its base class.
However, this reference can be used to refer only to base-class
members.

« Attempting to assign a base-class reference to a derived-class variable
IS a compilation error. To avoid this error, the base-class reference
must be cast to a derived-class type explicitly.

.....

	Chapter 12�OOP: Polymorphism, Interfaces and Operator Overloading
	Slide Number 2
	Slide Number 3
	12.1 Introduction
	12.2 Polymorphism Examples
	12.2 Polymorphism Examples (Cont.)
	Slide Number 7
	12.3 Demonstrating Polymorphic Behavior
	12.3 Demonstrating Polymorphic Behavior (Cont.)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	12.3 Demonstrating Polymorphic Behavior (Cont.)
	12.4 Abstract Classes and Methods
	12.4 Abstract Classes and Methods (Cont.)
	12.4 Abstract Classes and Methods (Cont.)
	12.4 Abstract Classes and Methods (Cont.)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	12.4 Abstract Classes and Methods (Cont.)
	12.5 Case Study: Payroll System Using Polymorphism
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide Number 27
	12.5.1 Creating Abstract Base Class Employee
	12.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	12.5.2 Creating Concrete Derived Class SalariedEmployee
	Slide Number 34
	Slide Number 35
	Slide Number 36
	12.5.3 Creating Concrete Derived Class HourlyEmployee
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	12.5.4 Creating Concrete Derived Class CommissionEmployee
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	12.5.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	Slide Number 48
	Slide Number 49
	Slide Number 50
	12.5.6 Polymorphic Processing, Operator is and Downcasting
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	12.5.6 Polymorphic Processing, Operator is and Downcasting (Cont.)
	12.5.6 Polymorphic Processing, Operator is and Downcasting (Cont.)

