
Lecture 7

JavaScript Events

HTML events are "things" that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can "react" on these

events.

HTML Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed

 An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

Each available event has an event handler, which is a block of code (usually a
JavaScript function that you as a programmer create) that will be run when the
event fires.

HTML allows event handler attributes, with JavaScript code, to be added to
HTML elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added to

a <button> element:

Example

<button onclick="document.getElementById('demo').innerHTML = Date()">The
time is?</button>

In the example above, the JavaScript code changes the content of the element
with id="demo".

In the next example, the code changes the content of its own element
(using this.innerHTML):

Example

<button onclick="this.innerHTML = Date()">The time is?</button>

JavaScript code is often several lines long. It is more common to see event

attributes calling functions:

Example

<button onclick="displayDate()">The time is?</button>

Common HTML Events

Here is a list of some common HTML events:

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

What can JavaScript Do?

Event handlers can be used to handle, and verify, user input, user actions, and
browser actions:

 Things that should be done every time a page loads

 Things that should be done when the page is closed
 Action that should be performed when a user clicks a button
 Content that should be verified when a user inputs data

 And more ...

Many different methods can be used to let JavaScript work with events:

 HTML event attributes can execute JavaScript code directly
 HTML event attributes can call JavaScript functions
 You can assign your own event handler functions to HTML elements

 You can prevent events from being sent or being handled

 And more ...

JavaScript HTML DOM

With the HTML DOM, JavaScript can access and change all the elements of

an HTML document.

The HTML DOM (Document Object Model)

When a web page is loaded, the browser creates a Document Object Model of
the page.

The HTML DOM model is constructed as a tree of Objects:

The HTML DOM Tree of Objects

With the object model, JavaScript gets all the power it needs to create dynamic
HTML:

 JavaScript can change all the HTML elements in the page
 JavaScript can change all the HTML attributes in the page

 JavaScript can change all the CSS styles in the page
 JavaScript can remove existing HTML elements and attributes
 JavaScript can add new HTML elements and attributes
 JavaScript can react to all existing HTML events in the page

 JavaScript can create new HTML events in the page

What is the DOM?

The DOM is a W3C (World Wide Web Consortium) standard.

The DOM defines a standard for accessing documents:

"The W3C Document Object Model (DOM) is a platform and language-neutral

interface that allows programs and scripts to dynamically access and update the
content, structure, and style of a document."

The W3C DOM standard is separated into 3 different parts:

 Core DOM - standard model for all document types

 XML DOM - standard model for XML documents

 HTML DOM - standard model for HTML documents

What is the HTML DOM?

The HTML DOM is a standard object model and programming interface for
HTML. It defines:

 The HTML elements as objects
 The properties of all HTML elements

 The methods to access all HTML elements

 The events for all HTML elements

In other words: The HTML DOM is a standard for how to get, change, add,
or delete HTML elements.

JavaScript - HTML DOM Methods

HTML DOM methods are actions you can perform (on HTML Elements).

HTML DOM properties are values (of HTML Elements) that you can set or

change.

The DOM Programming Interface

The HTML DOM can be accessed with JavaScript (and with other programming
languages).

In the DOM, all HTML elements are defined as objects.

The programming interface is the properties and methods of each object.

A property is a value that you can get or set (like changing the content of an
HTML element).

A method is an action you can do (like add or deleting an HTML element).

Example

The following example changes the content (the innerHTML) of the <p> element

with id="demo":

Example

<html>

<body>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

</html>

In the example above, getElementById is a method, while innerHTML is

a property.

The getElementById Method

The most common way to access an HTML element is to use the id of the

element.

In the example above the getElementById method used id="demo" to find the

element.

The innerHTML Property

The easiest way to get the content of an element is by using
the innerHTML property.

The innerHTML property is useful for getting or replacing the content of HTML

elements.

The innerHTML property can be used to get or change any HTML element,

including <html> and <body>.

JavaScript HTML DOM Document

The HTML DOM document object is the owner of all other objects in your

web page.

The HTML DOM Document Object

The document object represents your web page.

If you want to access any element in an HTML page, you always start with
accessing the document object.

Below are some examples of how you can use the document object to access
and manipulate HTML.

Finding HTML Elements

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByClassName(name) Find elements by class name

Changing HTML Elements

Property Description

element.innerHTML = new html content Change the inner HTML of an element

element.attribute = new value Change the attribute value of an HTML element

element.style.property = new style Change the style of an HTML element

Method Description

element.setAttribute(attribute, value) Change the attribute value of an HTML element

Adding and Deleting Elements

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text) Write into the HTML output stream

Adding Events Handlers

Method Description

document.getElementById(id).onclick = function(){code} Adding event handler code to an onclick event

Finding HTML Objects

The first HTML DOM Level 1 (1998), defined 11 HTML objects, object collections,
and properties. These are still valid in HTML5.

Later, in HTML DOM Level 3, more objects, collections, and properties were

added.

Property Description

document.anchors Returns all <a> elements that have a name attribute

document.applets Returns all <applet> elements (Deprecated in HTML5)

document.baseURI Returns the absolute base URI of the document

document.body Returns the <body> element

document.cookie Returns the document's cookie

document.doctype Returns the document's doctype

document.documentElement Returns the <html> element

document.documentMode Returns the mode used by the browser

document.documentURI Returns the URI of the document

document.domain Returns the domain name of the document server

document.domConfig Obsolete. Returns the DOM configuration

document.embeds Returns all <embed> elements

document.forms Returns all <form> elements

document.head Returns the <head> element

document.images Returns all elements

document.implementation Returns the DOM implementation

document.inputEncoding Returns the document's encoding (character set)

document.lastModified Returns the date and time the document was updated

document.links Returns all <area> and <a> elements that have a href attribute

document.readyState Returns the (loading) status of the document

document.referrer Returns the URI of the referrer (the linking document)

document.scripts Returns all <script> elements

document.strictErrorChecking Returns if error checking is enforced

document.title Returns the <title> element

document.URL Returns the complete URL of the document

JavaScript HTML DOM Events

HTML DOM allows JavaScript to react to HTML events:

Mouse Over Me

Click Me

Reacting to Events

A JavaScript can be executed when an event occurs, like when a user clicks on
an HTML element.

To execute code when a user clicks on an element, add JavaScript code to an
HTML event attribute:

onclick=JavaScript

Examples of HTML events:

 When a user clicks the mouse
 When a web page has loaded
 When an image has been loaded

 When the mouse moves over an element
 When an input field is changed
 When an HTML form is submitted

 When a user strokes a key

In this example, the content of the <h1> element is changed when a user clicks

on it:

Example

<!DOCTYPE html>
<html>
<body>

<h1 onclick="this.innerHTML = 'Ooops!'">Click on this text!</h1>

</body>
</html>

In this example, a function is called from the event handler:

Example

<!DOCTYPE html>
<html>
<body>

<h1 onclick="changeText(this)">Click on this text!</h1>

<script>
function changeText(id) {
 id.innerHTML = "Ooops!";
}
</script>

</body>
</html>

HTML Event Attributes

To assign events to HTML elements you can use event attributes.

Example

Assign an onclick event to a button element:

<button onclick="displayDate()">Try it</button>

Try it Yourself »

https://www.w3schools.com/js/tryit.asp?filename=tryjs_events1

In the example above, a function named displayDate will be executed when the

button is clicked.

Assign Events Using the HTML DOM

The HTML DOM allows you to assign events to HTML elements using JavaScript:

Example

Assign an onclick event to a button element:

<script>
document.getElementById("myBtn").onclick = displayDate;
</script>

In the example above, a function named displayDate is assigned to an HTML

element with the id="myBtn".

The function will be executed when the button is clicked.

The onload and onunload Events

The onload and onunload events are triggered when the user enters or leaves

the page.

The onload event can be used to check the visitor's browser type and browser

version, and load the proper version of the web page based on the information.

The onload and onunload events can be used to deal with cookies.

Example

<body onload="checkCookies()">

The onchange Event

The onchange event is often used in combination with validation of input fields.

Below is an example of how to use the onchange. The upperCase() function will

be called when a user changes the content of an input field.

Example

<input type="text" id="fname" onchange="upperCase()">

The onmouseover and onmouseout Events

The onmouseover and onmouseout events can be used to trigger a function when

the user mouses over, or out of, an HTML element:

Mouse Over Me

The onmousedown, onmouseup and onclick

Events

The onmousedown, onmouseup, and onclick events are all parts of a mouse-click.

First when a mouse-button is clicked, the onmousedown event is triggered,
then, when the mouse-button is released, the onmouseup event is triggered,
finally, when the mouse-click is completed, the onclick event is triggered.

	Lecture 7
	JavaScript Events
	HTML Events
	Example
	Example (1)
	Example (2)

	Common HTML Events
	What can JavaScript Do?
	JavaScript HTML DOM
	The HTML DOM (Document Object Model)
	The HTML DOM Tree of Objects

	What is the DOM?
	What is the HTML DOM?

	JavaScript - HTML DOM Methods
	The DOM Programming Interface
	Example
	Example

	The getElementById Method
	The innerHTML Property

	JavaScript HTML DOM Document
	The HTML DOM Document Object
	Finding HTML Elements
	Changing HTML Elements
	Adding and Deleting Elements
	Adding Events Handlers
	Finding HTML Objects

	JavaScript HTML DOM Events
	Reacting to Events
	Example
	Example (1)

	HTML Event Attributes
	Example

	Assign Events Using the HTML DOM
	Example

	The onload and onunload Events
	Example

	The onchange Event
	Example

	The onmouseover and onmouseout Events
	The onmousedown, onmouseup and onclick Events

