

Lecture 7

Group 6A (VIA)

Oxygen Family
(Chalcogens)

13	14	15	16	17	18
5 B 2s ² p ¹	6 C 2s ² p ²	7 N 2s ² p ³	8 O 2s ² p ⁴	9 F 2s ² p ⁵	2 He 1s ²
13 Al 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶
31 Ga 4s ² 4p ¹	32 Ge 4s ² 4p ²	33 As 4s ² 4p ³	34 Se 4s ² 4p ⁴	35 Br 4s ² 4p ⁵	36 Kr 4s ² 4p ⁶
49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶
81 Tl 6s ² 6p ¹	82 Pb 6s ² 6p ²	83 Bi 6s ² 6p ³	84 Po 6s ² 6p ⁴	85 At 6s ² 6p ⁵	86 Rn 6s ² 6p ⁶

 Metals

 Non-metals

 Metalloids

- None of the Group 6A elements behaves as a typical metal.

Occurrence :

- **O₂ makes up 21% of the Earth's atmosphere**
- Oxygen exists in free form as O₂ molecule in atmospheric and makes up to 21% by volume and 23% by weight of the atmosphere.
- It also occurs in combined state such as metal oxide, carbonates and bicarbonates, etc. in earths crust.
- Oxygen forms about 46.6% by mass of earth crust.
- In upper layer of atmosphere it also exists as O₃ (Ozone).

3

Physical properties of Oxygen

- Oxygen gas can exists in all three physical state- solid, liquid and gases. It's is pale-blue color in liquid and solid state.
- Oxygen gas liquefies at 90 K and freeze at 55 K.
- There are three possible isotopes of oxygen; ¹⁶O, ¹⁷O, ¹⁸O.
- Molecular orbital theory proves that dioxygen, O₂ is paramagnetic in nature.

4

- Oxygen exists as diatomic gaseous molecule (O_2).
- Oxygen undergoes $P\pi - P\pi$ overlapping with other oxygen atoms forming double bond, $O = O$.
- Other elements are linked by single bonds and form polyatomic complex molecules

eg. Sulphur and Selenium exist as octa-atomic molecules (S_8 and Se_8)

5

Catenation

Catenation is the tendency of an atom to form bonds with identical atoms.

Eg. oxygen links its two atoms in peroxides only $(-O-O-)^2$.

- Sulphur shows greater tendency towards catenation because of stronger S-S bond than O-O bond.
- Polysulphides are existing such as H-S-S-H, H- S - S - S - S - H
- The S-S bond is very important in biological systems and occurs in several proteins and enzymes.
- Catenation tendency decreases down the group from S to Po because of decrease in element bond strength.

6

Allotropy

All of 16th group elements show allotropy.

1. **Oxygen:** exists as O₂ and O₃
2. **Sulfur:** Rhombic, monoclinic
3. **Selenium:** red monoclinic, red amorphous selenium etc.
4. **Tellurium:** exists in two allotropic forms crystalline metallic and amorphous nonmetallic.
5. **Polonium:** has two forms α and β both metallic forms.

7

Electronic Configuration

Valence electron configuration: ns^2np^4

₈ O	$1s^2$ <u>$2s^22p^4$</u>	[He]2s ² 2p ⁴
₁₆ S	$1s^22s^22p^6$ <u>$3s^23p^4$</u>	[Ne]3s ² 2p ⁴
₃₄ Se	$1s^22s^22p^63s^23p^6$ <u>$3d^{10}4s^24p^4$</u>	[Ar] 4s ² 4p ⁴
₅₂ Te	$1s^22s^22p^63s^23p^6$ <u>$3d^{10}4s^24p^64d^{10}5s^25p^4$</u>	[Kr] 5s ² 5p ⁴
₈₄ Po	$1s^22s^22p^63s^23p^6$ <u>$3d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^4$</u>	[Xe] 6s ² 6p ⁴

8

Oxidation states

- Oxygen shows common oxidation state **-2**.
 - In OF_2 oxidation state of oxygen is **+2** due to its bonding with greatest electronegative element F
 - In H_2O_2 oxidation state of oxygen is **-1**
- Tendency to show **-2** oxidation state decreases from S to Te.
- Po does not show **-2** oxidation state but can show **+2** oxidation state.

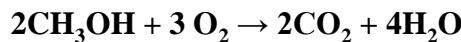
9

Oxidation states

- Other elements can show **+4, +6** oxidation states due to their ability to promote electrons in d-subshell, which can't be done by Oxygen.
- S, Se, Te can show **+4** as well as **+6** with F.
- Stability of **+6** oxidation state decreases while stability of **+4** oxidation state increases down the group **due to inert pair effect.**

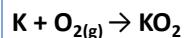
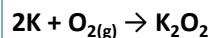
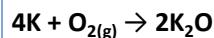
10

Chemical Properties of Oxygen and its Compound

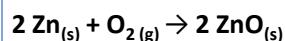

1. Combustion Reaction:

Dioxygen acts as a supporter for combustion reaction but itself not combustible.

All organic compounds like hydrocarbons burn in the presence of oxygen to give carbon dioxide gas and water vapor.




Example:

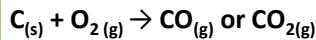
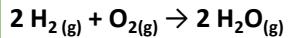
Methanol burns in air forming carbon dioxide and water:



11

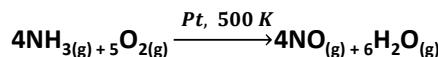
Reaction with Metals

With other metals, dioxygen forms metal oxides.

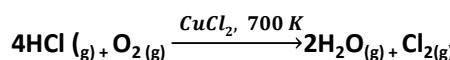


12

Reaction with Non-metal

Dioxygen reacts with non-metals also like hydrogen, carbon, sulfur and phosphorus & form oxides.

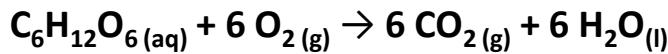

Reaction occurs at high temperature or in electric discharge.

For example,


13

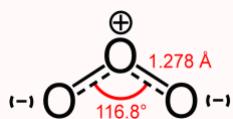
With ammonia (preparation of Nitric acid)

In Decon's process,


dioxygen oxidized hydrochloric acid to form water and chlorine gas. Reaction takes place at 700 K temperature and in the presence of CuCl_2 catalyst.

14

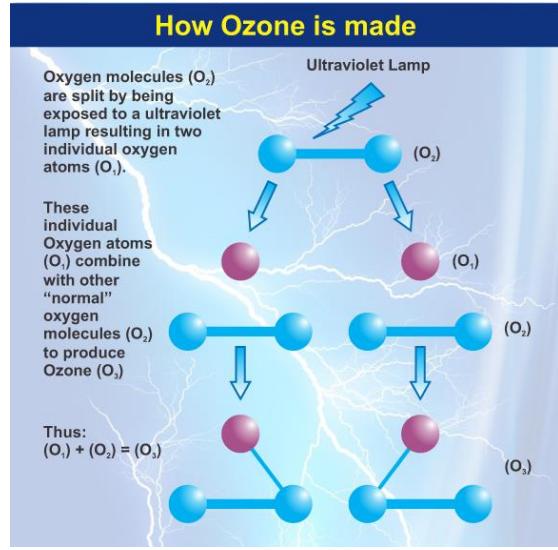
Respiration


It's a very important chemical property of dioxygen. It involves in respiration of all living bodies. Basically respiration is a combustion process of carbohydrates to produce carbon dioxide and water with a large amount of energy.

15

Ozone

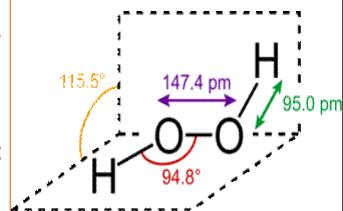
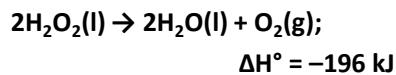
- O_3 (ozone) exists naturally in the upper atmosphere (the stratosphere) of the Earth.
- Ozone layer absorbs UV light and acts as a screen to block most uv-radiation from reaching the Earth's surface.



Ozone is an extremely powerful oxidizing agent.

Ozone can be used for destroying bacteria in water by oxidation.

Ozone



- ✓ allotropic form of oxygen
- ✓ important component of the atmosphere
- ✓ effect on the ozone layer
- ✓ ozone is toxic!
- ✓ used for drinking water treatment

17

HYDROGEN PEROXIDE, PEROXIDES, AND SUPEROXIDES

- Hydrogen peroxide is a colorless, viscous liquid which boils at 150 °C.
- Like water, it is strongly associated by hydrogen bonding.
- When the pure liquid is heated, it decomposes rapidly and even explosively in a disproportionation reaction:

18

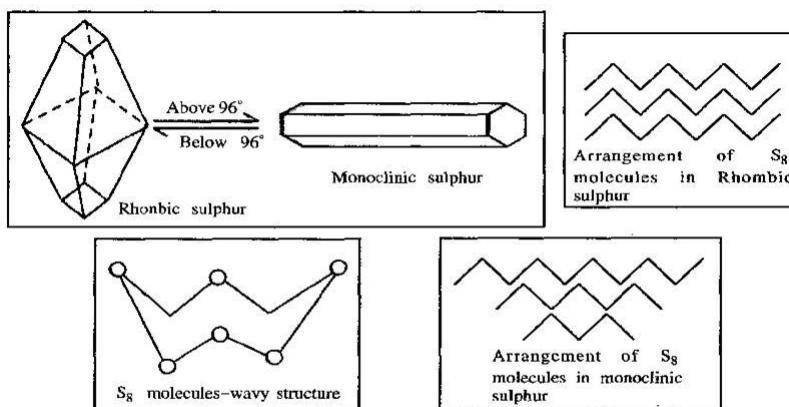
H₂O₂

Hydrogen peroxide is an important industrial chemical which has many applications; for example, it is used as:

- bleaching agent for textiles and for wood pulp and waste paper in paper making.
- Its usage for bleaching hair is well known.
- Its bleaching action is possible due to its strong oxidizing properties.
- H₂O₂ can be used as oxidizing agent and as reducing agent

19

Sulfur


Sulfur is found in nature both in large deposits of the free element and in ores such as:

- Galena = PbS,
- Cinnabar = HgS,
- Pyrite = FeS₂,
- Gypsum = CaSO₄·2H₂O),
- Epsomite = MgSO₄·7H₂O, and
- Glauberite = Na₂Ca(SO₄)₂

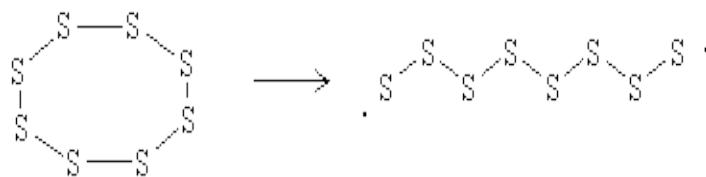
General properties

Allotropes:

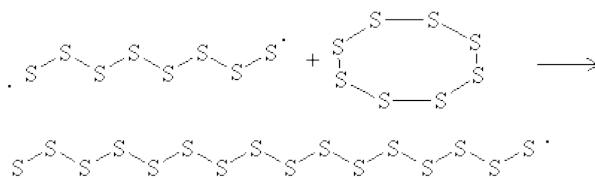
- (1) Rhombic sulphur, S_8 (room to 96°C)
- (2) Monoclinic sulphur, S_8 (stable between 96-119°C)
- (3) Plastic sulphur, long polymeric chains

Effect of temperature on sulphur (Figure only for information)

Plastic sulfur


- Another form of sulfur is obtained by molten sulfur quick cooling by pouring it into cold water.
- A brown rubbery material known as *plastic sulfur* is obtained.
- It is not stable and within a few hours it transforms back into crystalline orthorhombic sulfur.

23


Plastic sulfur consists of very long chains of sulfur atoms rather than S_8 rings.

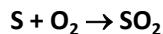
When liquid sulfur is heated to about $160\text{ }^\circ\text{C}$, one of the S-S bonds in some of the rings breaks, and the rings open forming chains of eight sulfur atoms.

24

- The sulfur atoms at each end of the chain have only seven valence electrons. Therefore they have a strong tendency to attach an additional electron and are very reactive.
- An S_8 chain reacts with S_8 ring causing its opening up and thereby forming a 19-atom chain

25

- But the sulfur atoms at the ends of the chain have only seven electrons, so the process continues, leading to the formation of very long chains of thousands of atoms.
- When the temperature is increasing from 160 °C to 190 °C, the chains become longer and more tangle, and the liquid becomes increasingly thick and sticky, like maple syrup or molasses.
- There are still other, less important allotropes of sulfur that contain rings of six, seven, twelve, and more sulfur atoms.
-

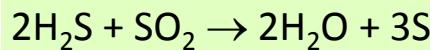
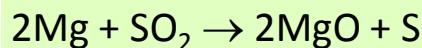

26

Range of sulphur compounds

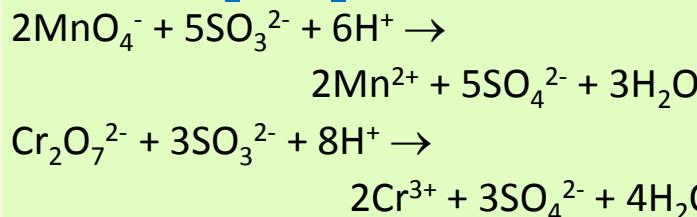
Chemical formulae	Oxidation state
$\text{S}^{2-}, \text{H}_2\text{S}$	-2
S_8	0
$\text{SCl}_2, \text{S}_2\text{O}_3^{2-}$	+2
$\text{SO}_2, \text{SO}_3^{2-}, \text{H}_2\text{SO}_3$	+4
$\text{SO}_3, \text{SO}_4^{2-}, \text{H}_2\text{SO}_4$	+6

Burning of sulphur

- Sulphur burns with a dull blue flame to form sulphur dioxide

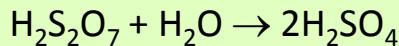
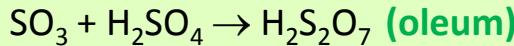
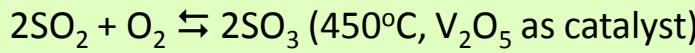
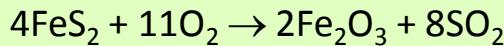
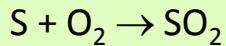



- trace of misty sulphur trioxide are also formed.


Sulphur dioxide

- A colourless gas with choking smell
- An acidic gaseous pollutant
- Readily liquefied under pressure
- Very soluble in water and reacts to form sulphuric(IV) acid
- **Can be further oxidized to SO_3 , which dissolves in water to form sulphuric(VI) acid, H_2SO_4**

Oxidizing properties of SO_2

Aqueous $\text{SO}_2 \equiv \text{SO}_3^{2-}(\text{aq})$

Sulphuric Acid

Contact Process:

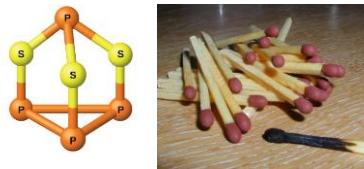
Chemical properties of H_2SO_4

Concentrated H_2SO_4

• As an oxidizing agent

- $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
- $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$

As a dehydrating agent


Reaction with HX

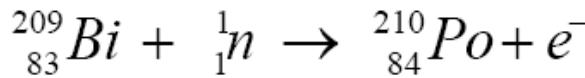
- $2HBr + H_2SO_4 \rightarrow Br_2 + SO_2 + 2H_2O$
- $8HI + 2H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O$

H_2SO_4 is used to Manufacture of detergents, dyestuffs, polymers, fibres, paints, fertilizers

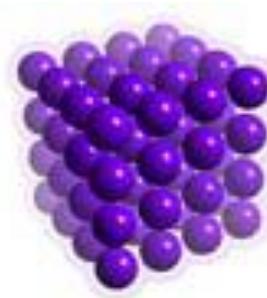
Important Compounds of Sulfur

- H_2SO_4 – most important compound, for manufacture of fertilizer, soap, detergents, metal and textile processing, sugar refinery, and organic syntheses;
- SF_4 – for fluoridation
- $\text{Na}_2\text{S}_2\text{O}_3$ – as reducing agent and complexing agent for Ag^+ in photography (called “hypo”);
- P_4S_3 – in “strike-anywhere” match heads

SELENIUM & TELLURIUM


- Selenium and tellurium are both large metalloids with similar properties.
- They exhibit oxidation states similar to sulfur that also range from -2 to +6.
- Their commonly found structures are different.
- Selenium is found as an 8-membered ring (like sulfur) and tellurium crystallizes in a chain-like form

POLONIUM



- Polonium, a radioactive element, is rarely found in nature. It's made in small quantities by a nuclear reaction with bismuth.
- There are 29 known radioisotopes and more known isotopes than any other element.

35

- Polonium crystallizes in a cubic structure.
- Due to large atomic size, Pi orbital overlap becomes difficult, therefore rarely forms double bonds.
- Following the trend, it's the least electronegative of the group, yet combines directly with most elements.

36