Essentials of Zoology (Cytology and Histology)

1st year General Biology/Ecology students 2019-2020

Lec. 7

Intended learning outcomes (ILO's):

By the end of this lecture, students should be able to:

- 1- State the general functions of connective tissues.
- 2- List the types of CT.
- 3- Differentiate between the different types of CT.
- 4- Relate the structure to the function of the different types of CT.
- 5- Recognize the inter-relatedness of all CT cells.

Connective tissues (CT)

- CT are widely distributed all over the body.
- Every organ is composed of or enclosed by some CT.
- CT consists of cells and extracellular matrix that includes fibers and specialized types of proteins forming the ground substances*.
- All CT contain isolated cells surrounded by extracellular matrix.
- CT cells create their own matrix that hold organs together.

Functions of CT

- Main function is to connect organs together.
- Functions of the various types of CT are generally depending on the types of cells, fibers, and the characters of the ground substances in the matrix.

1- CT Fibers

- Fibers are produced by fibroblasts and smooth muscle cells*.

1- Collagen Fibers

- Most abundant structural components of the CT.

- Flexible and have high tensile strength.
- With light microscope, the fibers are wavy with variable width and length.
- With electron microscope, appears as bundles of fine fibrils, uniform in diameter, the surface show transverse bands at equal distances.

2- Reticular Fibers

- Composed also of collagen.
- Fibrils are branched, with a narrow diameter, and do not bundle to form thick fibers.
- Provide a supporting framework for cellular constitutes of various organs.

3- Elastic Fibers

- Thin and branched fibers.
- Allow tissue to respond to stretch and distension.
- Interwoven with collagen fibers to limit the distensibility of tissue and prevent excessive stretching.
- Setty mages 250

- Composed of a central elastin core and a surrounding network of fibrillin.

2- CT Cells

A- Resident Cells

- Fibroblasts Myofibroblasts
- Macrophage Mast cells
- Pericytes Mesenchymal stem cells
- Adipose cells

B-Transient (Migrating) Cells

- Lymphocytes Monocytes
- Plasma cells
- Neutrophils Eosinophils
- Basophils

Classification of CT

1- Embryonic CT

- A- Mucous CT: Umbilical cord
- B- Mesenchyme (Embryonic loose CT)

2- CT proper

- A- Loose CT (Areolar, Adipose, Reticular)
- B- Dense CT (Dense regular & irregular)

3- Specialized types of C.T.

- A- Blood
- B- Lymphatic tissue
- C- Hemopoietic tissue (Bone Marrow)
- D- Cartilage
- E- Bone

1- Embryonic C.T

A- Mucous CT: (Wharton's jelly of umbilical cord).

With mucous matrix and clear fibres

B- Mesenchyme (embryonic loose CT)

- Cells are irregular, stellate (star) or spindle shaped.
- Ground substance lacks fibers.

2- CT proper

- CT proper are classified according to:
 - 1- Proportion of fibers: (low Loose; high Dense).
 - 2- Arrangement of fibers: (Regular (in parallel bundles) or Irregular (in a coarse feltwork شعر خشن).

A- Loose CT

- 1- Areolar CT:
- It occurs as packing بحزم and support of most structures.
- Has all types of fibers with collagen the most conspicuous.

- Well-supplied with nerves and blood vessels.
- 2- Adipose Tissue:
- Fat cells are the main cell type
- Surrounded by reticular fibres.
- Highly vascular reflecting the dynamic state of rapid metabolism and turnover of lipid.

- Brown Adipose Tissue (BAT) has many small lipid droplets, in contrast to the single droplet in White Adipose Tissue.

3- Reticular tissue:

- Composed of probably pluripotent cells and reticular fibres.
- Found in lymphoid tissues.

B - Dense CT

- Characterised by having a relatively high proportion of fibers.

1- Dense Irregular CT:

- A coarse feltwork of mainly collagenous fibres forming sheets.
- Designed to withstand multidirectional stress.

2- Dense Regular CT:

- Parallel fibers to withstand unidirectional stress.
- Fibroblasts are the main cell type.
- The main fiber type is collagen, except in special elastic ligaments. Examples. Tendons and ligaments, where the collagen fibres are arranged into bundles or fascicles.

3- Connective tissues of specialized functions

A- Blood

- Blood is a viscous fluid formed of cellular element suspended in plasma.
- A fluid CT of a low ratio of cells to liquid matrix (blood plasma). In human adults about 5 liters of blood contributes 7-8 % to the body weight.
- The cellular element is composed of erythrocytes (red blood corpuscles), leucocytes (white blood cells), and platelets.
- Plasma is a viscous, translucent, and yellowish fluid composed of water (90%), proteins (7%), salts (1%), and organic compound (2%) such as amino acids, lipids, and vitamins.
- The ratio of cellular to the total blood volume is about 43% and known as hematocrit value.
- Plasma proteins: Albumins, Globulins, Lipoproteins and coagulation proteins e.g. prothrombin and fibrinogen which gives rise to fibrin.

The cellular elements of blood

- Erythrocytes (RBCs)
- No nucleus in adult mammals (nucleated in embryonic and fetal mammals and in other vertebrates).
- With hemoglobin, which fills almost the entire cytoplasm.
- Typically biconcave disks, and do not contain organelles.
- Lifespan in the bloodstream is \sim 120 days.
- Function in the transport of O_2 and CO_2 .
- RBCs number is about 4.5 -5.5 million /mm3, the number is more in males than in females.

- Abnormalities of RBCs e.g. anemia mostly due to changes in shape, number, or hemoglobin content.

- White blood cells (WBC) or leucocytes

- Leukocytes can be subdivided into:
 Granular leukocytes (neutrophils, basophils and eosiniphils)
 Non-granular leukocytes (monocytes and lymphocytes).
- In healthy individuals the total number of circulating leukocyte is about 4000-10000/mm3.
- The differential leukocyte count is the percentage of each type of WBCs in blood:
 - ~ 60% neutrophils (50% 70%)
 - $\sim 4\%$ eosinophils (>0% 5%)
 - $\sim 0.5-1\%$ basophils (>0% 2%)
 - $\sim 5\%$ monocytes (1% 9%)
 - ~ 30% lymphocytes (20% 40%)

- Blood platelets (thrombocytes)

- Blood platelets do not contain nucleus, they are cytoplasmic fragments
 of very large thrombocytes that are found in the bone marrow.
 - Their number is 150,000 400,000/mm3.
 - Platelets assist in the arrest of bleeding.

Platelets

B- Cartilage

- Cartilage is a special type of CT has a firm pliable صلبة و مرنة matrix that can:
 resist mechanical stress,
 - > act as a shock absorber.
- Cartilage together with long bone form the skeleton and support the body (main function); it forms the whole fetal skeleton.
- Cartilage is non-vascular structure and not supplied with nervous or lymphatic tissues.

- Cartilage is formed of:
 - Cells: Chondroblasts, Chondrocytes
 - Fibers: Collagen fibers, Elastic fibers
 - Matrix: Proteoglycans, Glycosaminoglycans
- Types of Cartilage:
- Hyaline cartilage: With fine collagen fibers. Commonest type, present in the nose, larynx, trachea, bronchi, articulated surfaces of joints, on the ventral ends of ribs.
- Elastic cartilage: With fine collagen fibers and abundant elastic fibers. Located in the ear pinna, external and internal auditory tube.
- Fibrocartilage: With dense, coarse collagen fibers. Located in the inter-vertebral disks, tendons at insertion to bone.

C- Bone

- Structure of bone
 - Like other CTs, bone is formed of:
 - Cells: Osteoblasts, Osteocytes. Osteocytes are the main type; are branched and lie in lacunae which interconnect via narrow tunnels (canaliculi).
 - Matrix: Organic and non-organic components. Matrix is largely composed of calcium salts (60% by weight).
 - Fibers: fine collagen fibers.
- Types of bone:
 - Compact bone (Dense bone).
 - Spongy bone.

- Compact (Dense) bone
- Formed of Haversian and non-Haversian systems.
 - Haversian system: Bone lamellae are arranged around the blood vessels (Haversian canals).
 - The bone lamellae are formed of osteocytes inside lacunae and canaliculi embedded in calcified matrix.
 - Non-Haversian system: similar without the circular arrangement

- Spongy (Cancellous) bone

- Has cavities containing osteocytes inside the solid matrix.

