

The Halogens

- Most reactive nonmetal group;
- Not found as free elements in nature.
- Mainly found as halide ions (X⁻) in various minerals and in seawater.
- Very reactive non-metals
 - ✓ High electronegativity
 - ✓ High electron affinity
- Bonding and Oxidation states
- Colour

Halides

When halogens react with another substance, they become ions. When this happens, they are called halides.

Halogen	reaction	Halide	
fluorine (F)		fluoride (F ⁻)	
chlorine (Cl)		chloride (CI-)	
bromine (Br)		bromide (Br [_])	
iodine (I)		iodide (I ⁻)	

Why are they called the 'halogens'?

These halogen-metal compounds are salts, which give halogens their name – 'halo-gen' means 'salt-former'.

Electron structure

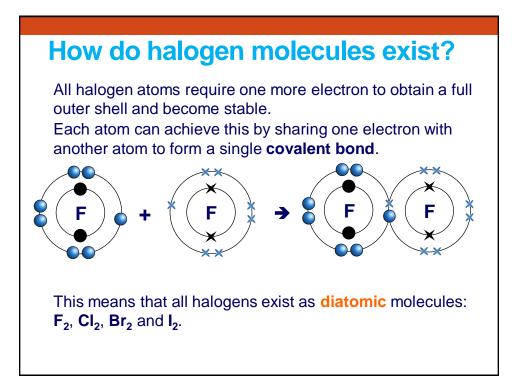
All halogens have 7 electrons in their outer shell, <u>ns², np⁵</u>.

This means that:

- They can easily obtain a full outer shell by gaining 1 electron.
- They all gain an electron in reactions to form **negative ions** with a -1 charge.
- They have similar chemical properties.

Electron structure and reactivity

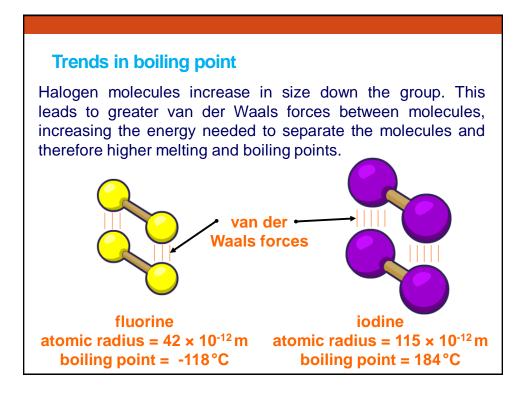
ecrease in reacti


F

CI

Br

All halogens are reactive, and the reactivity decreases down the group. What is the reason for this?


- This means that, down the group, the outer shell gets further away from the nucleus and is shielded by more electron shells.
- The further the outer shell is from the positive attraction of the nucleus, the harder it is to attract another electron.
- This means that reactivity decreases with the size of the atom.

What is the physical state of the halogens?

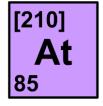
The melting and boiling points of the halogens increase down the group, as the molecules become bigger.

Halogen	Relative size	Melting point (°C)	Boiling point (°C)	State
fluorine		-220	-118	gas
chlorine		-101	-34	gas
bromine		-7	59	liquid
iodine		114	184	solid

Hydrogen halides			
The hydrogen	Hydro	gen halide	Boiling point (°C)
halides are		HF	20
colourless gases at room		HCI	-85
temperature.	HBr		-67
		HI	-35
$\delta_{+} H - F^{\delta_{-}}$ $\delta_{+} H - F^{\delta_{-}}$ $\delta_{+} H - F^{\delta_{-}}$	 Hydrogen fluoride has ar unexpectedly high boiling compared to the other hydrogen halides. This is hydrogen bonding betwee H–F molecules. 		lly high boiling point o the other alides. This is due to onding between the

Electronegativity

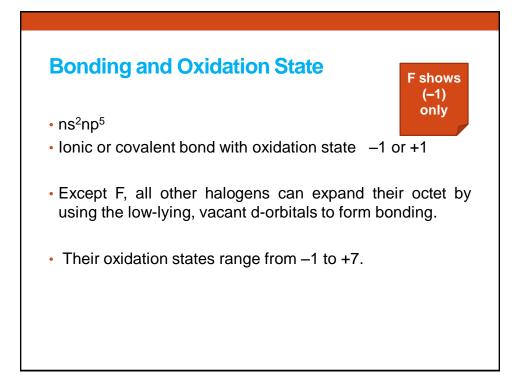
A measure of the attracting ability of bonding electrons.

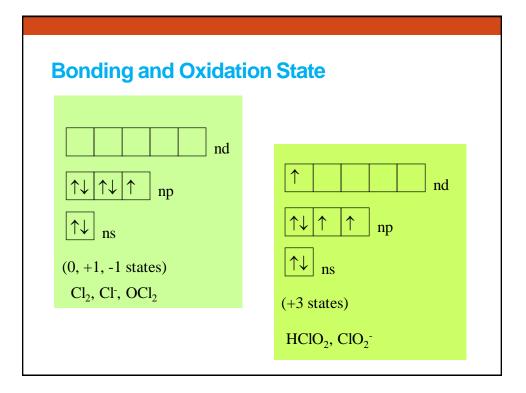

Due to their large effective nuclear charge, halogens are the most electronegative element in the periodic table.

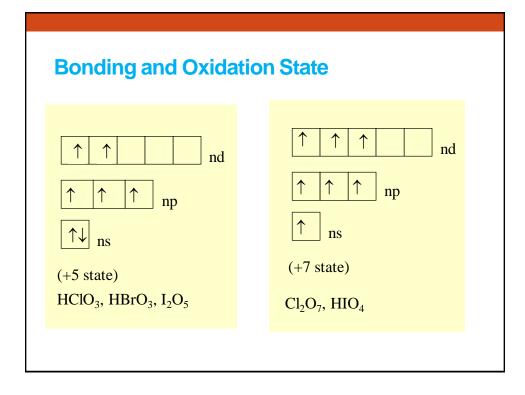
Element	EN value
F	4.0
Cl	3.0
Br	2.8
Ι	2.5

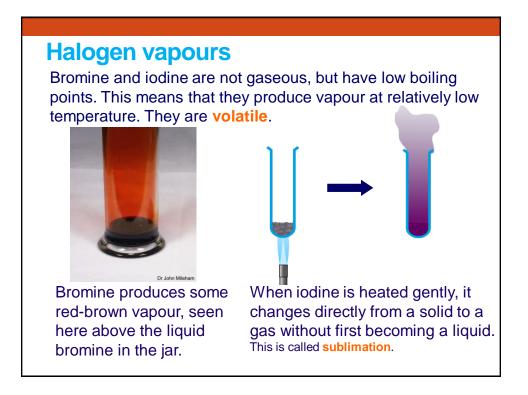
Astatine

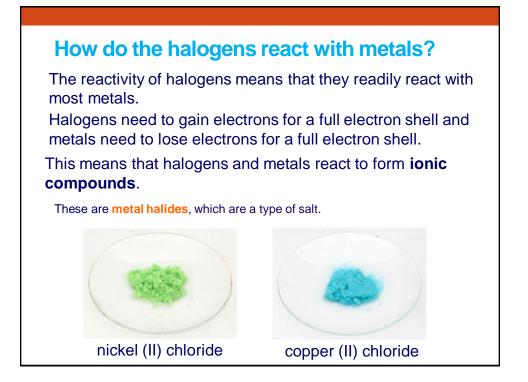
The name astatine comes from the Greek word for unstable.

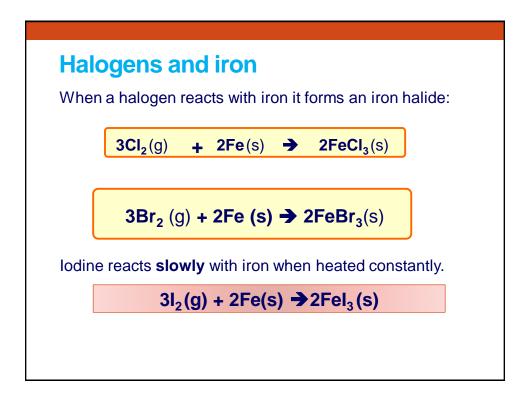

Astatine exists in nature in only very tiny amounts. It is estimated that only 30 grams of astatine exist on Earth at any one time. This is because it is **radioactive**, and its most stable isotope (²¹⁰At) has a half-life of only 8 hours.

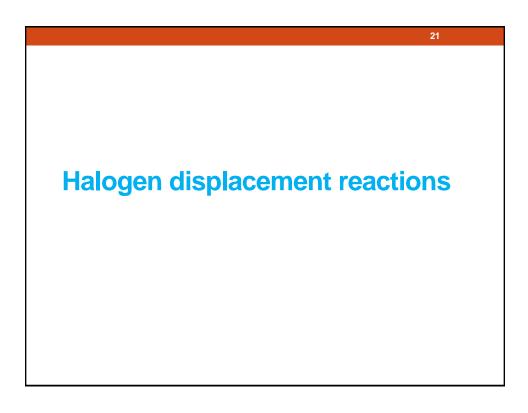


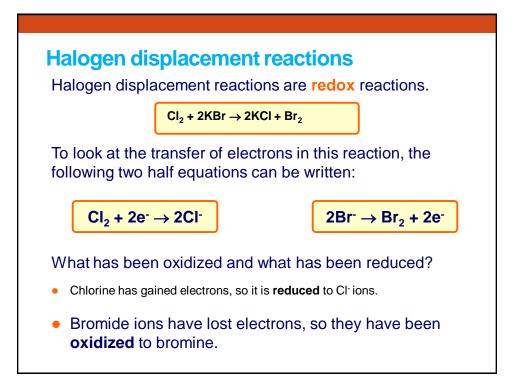

It was first made artificially in 1940, by bombarding 209 Bi with α -radiation. What do you predict for these properties of astatine?

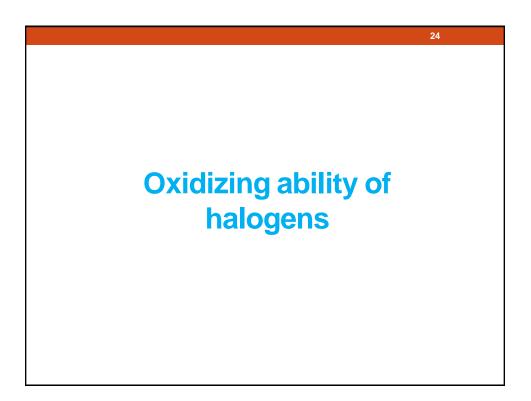

- colour
- state at room temperature
- electronegativity.



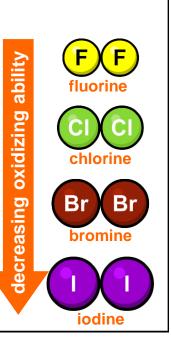








Displacement reactions
If a halogen is added to a solution of a compound containing a less reactive halogen, it will react with the compound and form a new one. This is called displacement.
$F_2(aq) + 2NaCl(aq) \rightarrow 2NaF(aq) + Cl_2(aq)$
A more reactive halogen will always displace a less reactive halide from its compounds in solution.

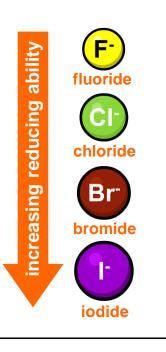

Oxidizing ability of halogens

In displacement reactions between halogens and halides, the **halogen** acts as an **oxidizing agent**.

This means that the halogen:

- **oxidizes** the halide ion to the halogen
- gains electrons
- is **reduced** to form the halide ion.

What is the order of oxidizing ability of the halogens?



Halides as reducing agents

A substance that donates electrons in a reaction (i.e. is oxidized) is a **reducing agent** because it reduces the other reactant.

The larger the halide ion, the easier it is for it to donate electrons and therefore the more reactive it is.

This is because its outermost electrons are further from the attraction of the nucleus and more shielded from it by other electrons. The attraction for the outermost electrons is therefore weaker.

Reaction with water

Fluorine oxidizes water to form HF and O₂

 $2F_2 + 2H_2O \rightarrow 2HF + O_2$

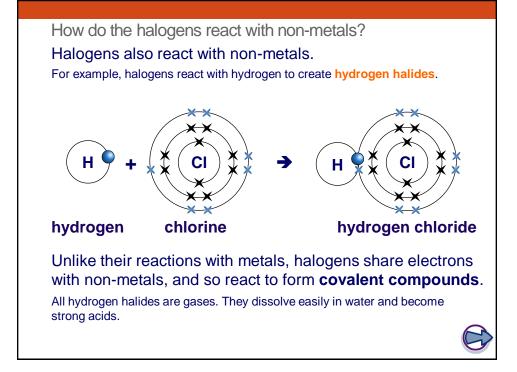
Chlorine undergoes disproportionation(self oxidation and reduction) to form HCl and HOCl.

 $Cl_2 + H_2O \rightarrow HCl + HOCl$

Reaction with water

A mixture of $Cl_2(aq)$, HCl(aq) and HOCl(aq) is called *chlorine water*.

OCl⁻, chloric(I) ion


- 1. Strong oxidizing agent with bleaching property OCl⁻ + dye (coloured) \rightarrow Cl⁻ + dye (colourless)
- 2. Unstable to heat and light $2OCl^{-} \rightarrow O_2 + 2Cl^{-}$

Reaction of chlorine with water

Chlorine is used to purify water supplies because it is toxic to bacteria, some of which can cause disease. Adding it to water supplies is therefore beneficial for the population.

However, chlorine is also toxic to humans, so there are risks associated with gas leaks during the chlorination process. There is also a risk of the formation of chlorinated hydrocarbons, which are also toxic.

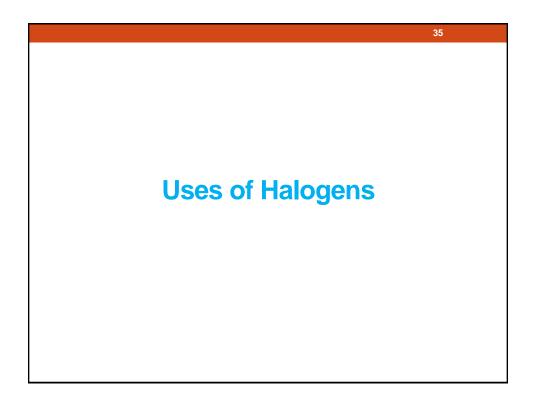
Halide + c. H_2SO_4 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + HCl (500^{\circ}C)$ $2NaBr + 2H_2SO_4 \rightarrow 2HBr + Na_2SO_4$ $2HI + H_2SO_4 \rightarrow SO_2 + Br_2 + 2H_2O$ $2NaI + 2H_2SO_4 \rightarrow 2HI + Na_2SO_4$ $8HI + H_2SO_4 \rightarrow H_2S + 4I_2 + 4H_2O$ Relative reducing power: HCl < HBr < HI

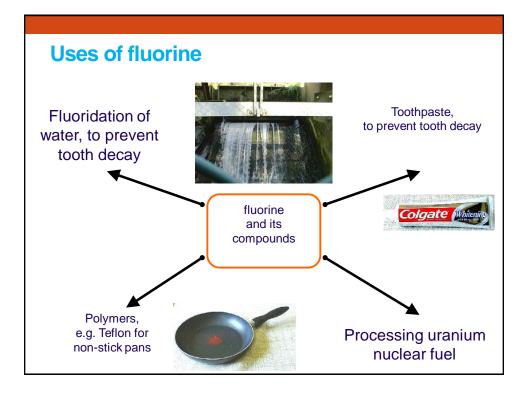
Halide + c. H_3PO_4

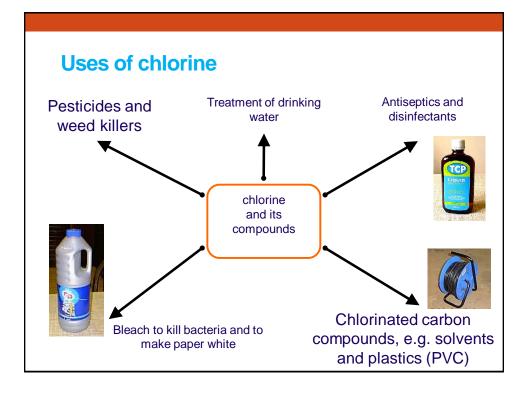
 $\begin{aligned} &3\mathrm{NaCl} + \mathrm{H_3PO_4} \rightarrow \mathrm{Na_3PO_4} + 3\mathrm{HCl} \\ &3\mathrm{NaBr} + \mathrm{H_3PO_4} \rightarrow \mathrm{Na_3PO_4} + 3\mathrm{HBr} \\ &3\mathrm{NaI} + \mathrm{H_3PO_4} \rightarrow \mathrm{Na_3PO_4} + 3\mathrm{HI} \end{aligned}$

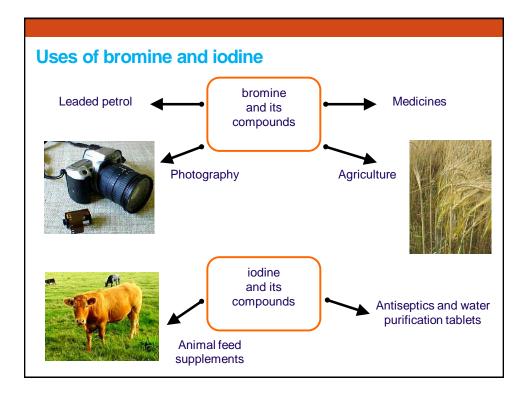
 H_3PO_4 is NOT a strong oxidizing agent. It reacts with halides to form HX.

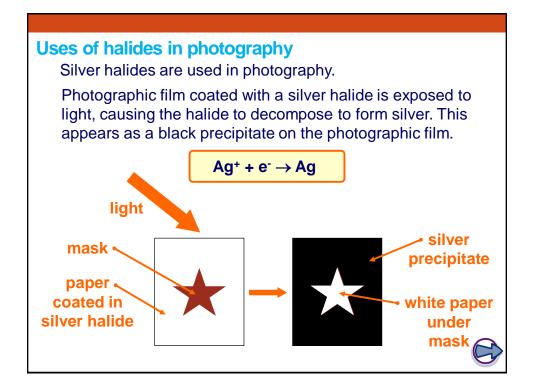
Halides + Ag⁺(aq)


 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$, white precipitate


 $Ag^+(aq) + Br^-(aq) \rightarrow AgBr(s)$, pale yellow precipitate


 $Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$, yellow precipitate


Halides + Ag⁺(aq)


Ion	Action of AgNO ₃₌	Effect of Standing in sunlight	Effect of adding excess aq. NH ₃
Cl-	White ppt.	Turns grey	White ppt. dissolves
Br⁻	Pale yellow ppt.	Turns yellowish grey	Pale yellow ppt. slightly dissolves
ľ	Yellow ppt.	Remains yellow	Yellow ppt. does not dissolve

