
CHAPTER 4 
(Simple line spectra and elements of atomic theory)

CONTINUED	



Arnold	Sommerfeldextended	the	Bohr	model	to	include	
elliptical	orbits

Bohr’s	concept	of	quantization	of	angular	momentum	led	
to	the	principal quantum	number n,	which	determines	
the	energy	of	the	allowed	states	of	hydrogen.

Sommerfeld’s theory	retained	n,	but	also	introduced	a	
new	quantum	number	ℓ called	the	orbital	quantum	
number,	where	the	value	of	ℓ ranges	from	0 to	n	- 1	in	
integer	steps.

According	to	this	model,	an	electron	in	any	one	of	the	
allowed	energy	states	of	a	hydrogen	atom	may	move	in	
any	one	of	a	number	of	orbits	corresponding	to	
different ℓ values.	



Sommerfeld Quantization Rules
• For any physical system in which the coordinates
are periodic function of time, there exists a
quantum condition for each coordinate, these
quantum conditions are:

where q is one of the coordinate, pq is the
momentum associated with that coordinate, nq is
the quantum number which take integral values.
This means that the integration is taken over one
period of the coordinate q.



• In	polar	coordinates	the	
position	of	the	electron	is	
given	by	the	azimuth	angle	
φ and	the	electron	nuclear	distance	r.	applying	the	
quantum	conditions	to	these	two	degree	of	
freedom,     1
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Where	nφ and	nr take	integral	values	only	and	are	
called	the	azimuthal	and	radial	quantum	
number, respectively



• If the particle is moving with a simple harmonic 
motion in one diminution the total energy would be: 
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since p=mv			then	v2=p2/m2

From	equation	3:

This equation of an ellipse                 and
Where a and b is the semi axes of the ellipse,



• To find the integral which represent the
relation between the momentum px and the
displacement of the on the x coordinates; we
can use the geometrical representation for the
ellipse equation.

• This equation gives the amount of linear
momentum for any displacement of the
electron. By taking the x coordinate to
represent the displacement and the vertical
coordinate to represent the momentum.



• This coordinate is called the phase-space and the 
figure is phase diagram for the moving particle in 
one demotion

• The	integration									give	the	area	of	the	ellipse:

Substitute for a and b:                  
,																							

The momentum of any particle moving in one dimensional 
simple harmonic motion :E=nhν which is the same of 
Bohr quantization 



Example:
Use	the	Sommerfeld’s quantization	principle	to	drive	the	
Bohr	quantization	rule.

Solution:
In	Bohr	Theory	the	electron	moves	in	circular	orbits	about	
the	proton	then	the	orbital	angular	momentum	

The	electron	nuclear	distance	r	is	constant	and	the	orbital	
angular	momentum

Sommerfeld’s quantization																								,

This	is	Bohr



• As	long	as	the	electron	orbit	is	circle	then	nr
and	nφ has	the	same	value.	If	n=3

• We	can	get		all	probabilities	the	electron	can	
get.	Here	are	three	probabilities	where	3=nφ+nr

• Home	work	get	the	possible	orbits	when	n=5	
and	7	



Reduced	Mass:
• There	was	a	difference	between	the	nucleus	mass	
estimated	by	Bohr	and	the	experimental	values.	This	
difference	because	Bohr	considered	that	the	much	
massed	nucleus	was	in	statuary	state.	To	reduce	the	
difference	we	have	to	consider	that	the	mass	of	the	
nucleus	is	limited	and	both	move	around	a	centre	of	
mass. Now	we	consider	the	electron	move	relative	to	
the	constant	mass	nucleus	with	a	Reduced	Mass	μ

• where	M is	the	mass	of	the
nucleus	and	m is	the	mass	of	
the	electron	



• To	prove	that	relationship,	consider	that	the	electron	
and	the	nucleus	move	around	the	centre	of	mass	O	as	
shown	in	fuggier.	Where	r1is	the	reduce	of	the	nucleus	
orbit	and	r2 is	the	reduce	of	the	electron	among	the	
centre	of	mass.	

• Using the centre of mass theory that mr1=Mr2. If a is
the distance between the electron and the nucleus
then:

                
1

2



Both masses move in a circular orbit
then the forces acting are in balance (the attraction
force and centripetal force.
For the Nucleus the forces are:

For the electron are :



• From	the	energy	calculation	for	both:
Total	K.E.	=	1/2	mv12 +	1/2	MV2

2

where	v1 =	ωr1 and	V2 =	ωr2
Therefore,	the	total	K.E.	=	1/2	mω2r12 +	1/2	Mω2r22

Substitute for	r1and	r2 from	equation	1,2

Therefore,	 is	the	reduced	mass	for	the	
electron	

The	second	assumption	of	Bohr
Also,	we	get																														where



Example
Consider	a	positronium atom	consisting	of	a	positron	
and	electron	revolving	about	their	common	centre	of	
mass	half	way	between	them,	If	such	a	system	were	a	
normal	atom	(a)	How	would	its	emission	spectrum	
compare	to	that	of	the	hydrogen	atom?	(b)	What	
would	be	the	radius	of	the	ground	state	orbit	of	
positronium?

Solution:
Calculate	the	reduced	mass:
Calculate	Rydberg constant
The	Bohr	energy	levels
And	the	wavelength



• The	positronium frequency	is	half	the	
Hydrogen	frequency	and	the	positronium
wavelength	will	be	double	as	long	of	Hydrogen

• The	positronium orbital	radius

Also,	double	as	long	of	Hydrogen



Example
Deuterium	atom	is	a	hydrogen	atom	whose	nucleus	contains	a	
proton	and	a	neutron.	How	does	the	doubled	nuclear	mass	
affect	the	atomic	spectrum?

Solution:
Deuterium	atom	is	a	hydrogen	atom	with	neutron	in	the	nucleus,	

the	Rydberg constant	for	hydreogen

For	Deuterium	atom	the	Rydberg constant

This	result	indicates	that	the	Deuterium	spectrum	will	be	shifted	
to	the	longer	wavelength



• According to Sommerfeld model, an electron in any
one of the allowed energy states of a hydrogen atom
may move in any one of a number of orbits
corresponding to different ℓ values

• For each value of n, there are n possible orbits
corresponding to different ℓ values(ℓ=0,n-1)

• the first energy level (ground state) we have
• n = 1 and ℓ= 0 there is only one possible orbit for this
state

• The second energy level, with n = 2, has two possible
orbits, corresponding to n=2, ℓ = 0 and ℓ = 1.

• The third energy level, with n = 3, has three possible
orbits, corresponding to ℓ = 0, ℓ = 1, and ℓ= 2.



• For	historical	reasons: all	states	with	the	same	
principal	quantum	number	n	are	said	to	form	a	
shell.	

• Shells	are	identified	by	the	letters
K,	L,	M,	N,	O,	P		this	correspond	to

n	=	1,	2,		3,	4	,	5,	6	describe	the	states	for	n
the	states	with	given	values	of	n	and	ℓ	are	said	to	
form	a	sub-shell.

The	letters	s,	p,	d,	f,	g,	h,	..are	used	to	describe	the	
states for	which	ℓ	=	0,	1,	2,	3,	4,	.	.	.	



• States	that	violate	the	restriction	0	≤	ℓ	≤	n	- 1,	for	
a	given	value	of	n,	can’t	exist.

• For example; the state 2d, would have n = 2 and ℓ
= 2, but can’t exist because the highest allowed 
value of ℓ is n - 1, or 1 in this case. 

For n = 2, 2s and 2p are allowed sub-shells, but 2d, 
2f, . . . are not. For n = 3, the allowed states are 3s, 
3p, and 3d.
• Another	modification	of	the	Bohr	Theory	arose	
when	it	was	discovered	that	the	spectral	lines	of	a	
gas	are	split	into	several	closely	spaced	lines	when	
the	gas	is	placed	in	a	strong	magnetic	field.



• This	is	called	the	Zeeman	effect,	after	its	discoverer.
• The	Zeeman	effect	explains	the	polarization	of	the	
light,	as	well	as	the	splitting	of	the	lines	into	three	
components.

• This	indicates	that	the	energy	of	an
electron	is	slightly	modified	when	the
atom	is	immersed	in	a	magnetic	field.
In	order	to	explain	this	observation,	a	new	quantum	
number,	mℓ,	called	the	orbital	magnetic	quantum	
number,	was	introduced.	The	theory	is	in	accord	with	
experimental	results	when	mℓ is	restricted	to	values	
ranging	from	-ℓ	to	+ℓ	in	integer	steps.	For	a	given	
value	of	ℓ,	there	are	2ℓ+	1	possible	values	of	mℓ.



• high	resolution	spectrometers	revealed	that	spectral	
lines	of	gases	are	in	fact	two	very	closely	spaced	
lines	even	in	the	absence	of	an	external	magnetic	
field.	This	splitting	was	referred	to	as	fine	structure.

• The	results	of	Goudsmit and		Uhlenbeck work	
introduced	yet	another	quantum	number,	ms,	called	
the	spin	magnetic	quantum	number.

• For	each	electron	there	are	two	spin	states.	A	sub-
shell	corresponding	to	a	given	factor	of	ℓ	can	
contain	no	more	than	2(2ℓ+1)	electrons.

• This	number	comes	from	the	fact	that	electrons	in	a	
sub-shell	must	have	unique	pairs	of	the	quantum	
numbers	(mℓ,	ms).



• There	are	2ℓ	+	1	different	magnetic	quantum	
numbers	mℓ,	and	two	different	spin	quantum	
numbers	ms,	making	2(2ℓ+1)	unique	pairs	(mℓ,	
ms).

For	example:
the	p	sub-shell	(ℓ=	1)	is	filled	when	it	contains	
2(2	x1+	1)	=	6	electrons.	
• This	fact	can	be	extended	to	include	all	four	
quantum	numbers,	as	will	be	important	to	us	
later	when	we	discuss	the	Pauli	Exclusion	
Principle.



SUMMARY




















