CHAPTER 4

(Simple line spectra and elements of atomic theory)

CONTINUED



Arnold Sommerfeld extended the Bohr model to include

elliptical orbits
L
N

Bohr’s concept of quantization of angular momentum led
to the principal quantum number n, which determines
the energy of the allowed states of hydrogen.

Sommerfeld’s theory retained n, but also introduced a
new quantum number € called the orbital quantum
number, where the value of € ranges fromOton-1in
Integer steps.

According to this model, an electron in any one of the
allowed energy states of a hydrogen atom may move in
any one of a number of orbits corresponding to
different € values.




Sommerfeld Quantization Rules

 For any physical system in which the coordinates
are periodic function of time, there exists a
quantum condition for each coordinate, these

guantum conditions are:

§pgdq =n,h

where ¢ is one of the coordinate, p, is the
momentum associated with that coordinate, g 1S
the quantum number which take integral values.
This means that the integration is taken over one

period of the coordinate q.



* |n polar coordinates the
position of the electron is

given by the azimuth angle

® and the electron nuclear distance r. applying the
guantum conditions to these two degree of

freedom, §ptpd¢=n(ph 1
fp.,.d‘r =n,h 2

Where ng, and n, take integral values only and are
called the azimuthal and radial quantum
number, respectively



* Ifthe particle is moving with a simple harmonic

motion in one diminution the total energy would be:
1

)

E=K+V =%mv: +

foc? 3

since p=mv then v?=p’/m?
From equation 3:

This equation of an ellipse a=+2E/k and h=:nE
Where a and b is the semi axes of the ellipse,



* To find the integral f{; Pedq which represent the
relation between the momentum p, and the
displacement of the on the x coordinates; we
can use the geometrical representation for the

ellipse equation. el N
N | S

* This equation gives the amount of linear
momentum for any displacement of the
electron. By taking the x coordinate to
represent the displacement and the vertical
coordinate to represent the momentum.




* This coordinate is called the phase-space and the
figure is phase diagram for the moving particle in
one demotion

* The integrationqud% give the area of the ellipse:

Substitute for a and b: § p,dx=mb mE{p,dx= %
N 2aE E

Jk/memy § p.dx =

Y=

=—=nh=nl
2?{1/- §pxdx - =n.h=nh

s V

The momentum of any particle moving in one dimensional
simple harmonic motion :E=nhv which 1s the same of
Bohr quantization




Example:

Use the Sommerfeld’s quantization principle to drive the
Bohr quantization rule.

Solution:
In Bohr Theory the electron moves in circular orbits about
the proton then the orbital angular momentum ’21—:; — L

The electron nuclear distance r is constant and the orbital
angular momentum L = muvr = constant

Sommerfeld’s quantization $7,da=n2 , {Ldé=nh

-
”

§Ld9=£}> 9 =21

27 = nh

7 nh

This is Bohr o




* Aslong as the electron orbit is circle then n,
and ng has the same value. If n=3

 We can get all probabilities the electron can
get. Here are three probabilities where 3=n,+n,

Type of orbit Shap of L n, Ny =3
Elliptical orbit la ] ) ] 3
3
Elliptical orbit ! | 2 3
3
circular orbits 3 -1 ( 3 3
* Home work get the possible orbits when n=5

and 7



Reduced Mass:

 There was a difference between the nucleus mass
estimated by Bohr and the experimental values. This
difference because Bohr considered that the much
massed nucleus was in statuary state. To reduce the
difference we have to consider that the mass of the
nucleus is limited and both move around a centre of
mass. Now we consider the electron move relative to
the constant mass nucleus with a Reduced Mass |

A TN A / ™~ y
m + “[ ( wg\ \ \/ ® "
. i
* where M is the mass of the LR y
) \ 4
nucleus and m is the mass of S~ N4

S— —

Actual system Model system

the electron



* To prove that relationship, consider that the electron
and the nucleus move around the centre of mass O as
shown in fuggier. Where r,is the reduce of the nucleus
orbit and r, is the reduce of the electron among the
centre of mass.

* Using the centre of mass theory that mr;=Mr,. If a is

the distance between the electron and the nucleus
then:

mry ‘ N aM
n=a—-1mnh=a——— T 1

2 M s (m+ M)

aM
T, == . 2 N
(m+ M) X

Iz



Both masses move in a circular orbit

then the forces acting are in balance (the attraction
force and centripetal force.

For the Nucleus the forces are:

2 S

Ze~ . My~
4 _a” ”
For the electron are :
Ze* my°

dre a” n



* From the energy calculation for both:

Total K.E. = 1/2 mv,2 + 1/2 MV,?

wherev, = wr, and V, = wr,

Therefore, the total K.E. = 1/2 mw?r,? + 1/2 Mw?r,?
Substitute for r,and r, from equation 1,2

KE _ ll: mJI ]@202

2Ilm+ M
Therefore, .- ™ |is the reduced mass for the

B m+ M
electron

The second assumption of Bohr | tvr = nh

M .
[ R:Q =£R:D

m+ M m

Also, we get 2 =r,z% .- L] whereg

2 . .1'{ =
\ My n; )



EXx

So
Ca
Ca
Th

And the wavelength

ample

Consider a positronium atom consisting of a positron
and electron revolving about their common centre of
mass half way between them, If such a system were a
normal atom (a) How would its emission spectrum
compare to that of the hydrogen atom? (b) What
would be the radius of the ground state orbit of
positronium?

ution: e mM m?* _m
culate the reduced mass: m+M 2m 2
m R
culate Rydberg constant Ry =——R, =~
e Bohr energy levels g o Rz R.heZ’

"n 2n°




* The positronium frequency is half the
Hydrogen frequency and the positronium
wavelength will be double as long of Hydrogen

* The positronium orbital radius

- & = 4!

lZe* mle R

dme n'h® dmen'h’
y — )

Positronium

Also, double as long of Hydrogen



Example
Deuterium atom is a hydrogen atom whose nucleus contains a
proton and a neutron. How does the doubled nuclear mass
affect the atomic spectrum?

Solution:

Deuterium atom is a hydrogen atom with neutron in the nucleus,

the Rydberg constant for hydreogen

29 -1
R, =P =K _1OBTm 109678 omt
" e 2 e
G U 1836

For Deuterium atom the Rydberg constant

“27 -1
R ,109 oL — =109707 em ™

m ) | 1 \

| ] ) + | |
M ;) 2x1836 )

This result indicates that the Deuterium spectrum will be shifted
to the longer wavelength



According to Sommerfeld model, an electron in any
one of the allowed energy states of a hydrogen atom
may move in any one of a number of orbits
corresponding to different € values

For each value of n, there are n possible orbits
corresponding to different € values(€=0,n-1)

the first energy level (ground state) we have

n=1and €= 0 there is only one possible orbit for this
state

The second energy level, with n = 2, has two possible
orbits, correspondington=2, £ =0and € = 1.

The third energy level, with n = 3, has three possible
orbits, correspondingto€ =0,£ =1, and €= 2.



* For historical reasons: all states with the same
principal quantum number n are said to form a

shell.
* Shells are identified by the letters
K,L M, N, O, P this correspondto
n=1,2, 3,4,5, 6 describe the statesfor n

the states with given values of n and € are said to
form a sub-shell.

The letters s, p, d, f, g, h, ..are used to describe the
states for which€=0, 1, 2, 3,4, ...



e States that violate the restriction0<€<n-1, for
a given value of n, can’t exist.

* For example; the state 2d, would have n = 2 and €
= 2, but can’t exist because the highest allowed
value of € is n - 1, or 1 in this case.

Forn =2, 2s and 2p are allowed sub-shells, but 2d,
2f, ...arenot. For n = 3, the allowed states are 3s,

3p, and 3d.

* Another modification of the Bohr Theory arose
when it was discovered that the spectral lines of a
gas are split into several closely spaced lines when
the gas is placed in a strong magnetic field.



* Thisis called the Zeeman effect, after its discoverer.

* The Zeeman effect explains the polarization of the
light, as well as the splitting of the lines into three

components.
* Thisindicates that the energy of an
electron is slightly modified when the ‘ ‘ ’

[Figure 28.9 A single line (A) can

atom is immersed in @ magnetic field. i b cpme ines @ o

In order to explain this observation, a new quantum
number, m,, called the orbital magnetic quantum
number, was introduced. The theory is in accord with
experimental results when m, is restricted to values
ranging from -€ to +£ in integer steps. For a given
value of £, there are 28+ 1 possible values of m,.




high resolution spectrometers revealed that spectral
ines of gases are in fact two very closely spaced
ines even in the absence of an external magnetic
field. This splitting was referred to as fine structure.

The results of Goudsmitand Uhlenbeck work
introduced yet another quantum number, m, called
the spin magnetic quantum number.

For each electron there are two spin states. A sub-
shell corresponding to a given factor of € can
contain no more than 2(2€+1) electrons.

This number comes from the fact that electronsin a
sub-shell must have unique pairs of the quantum
numbers (m,, m.).



 There are 28 + 1 different magnetic quantum
numbers m,, and two different spin quantum
numbers m,, making 2(2€+1) unique pairs (m,,
m.).

For example:

the p sub-shell (8= 1) is filled when it contains
2(2 x1+ 1) = 6 electrons.

 This fact can be extended to include all four

guantum numbers, as will be important to us

later when we discuss the Pauli Exclusion
Principle.




SUMMARY

Sommerfeld atomic model -

This model explains the fine spectrum of Hydrogen atom.The important postulates of
Sommerfeld atomic model are-

1) The orbits may be both circular or elliptical.

-~

J \ -
/ \ Ellipse

[ —— 2) When path is elliptical, then there are two axis - major axis & minor axis, When length of
T \ major & minor axis become equal then orbit is circular.

Major axis

1
\
ll{\ “:‘ |
\ |
N\ g |
o 5 4
o f k

Minor axis



3) The angular momentum of electron moving in an elliptical orbit is kh/ 2t

k is an integer except zero.
Valueofk=1,234.....
n/k = length of major axis / length of minor axis

With increase in value of k, ellipticity of the orbit decreases. When n= k,then orbit is circular.

n=4,k=4



4) Sommerfeld suggested that orbits are made up of sub energy levels. These are s,p,d,f. These
sub shells possess slightly different energies.

Bohr gave a quantum number ‘n’, which determines the energy of electron.

Sommerfeld introduced a new quantum number called Orbital or Azimuthal Quantum number
( 1) which determines the orbital angular momentum of electron.

Values of I =0 to (n-1)

For,n=1 ;/=0; 1ssu

n=2; 1=0,1;2s, 2p sub shell
n=3; 1=0,1,2;3s, 3p, 3d sub shell

n=4;1=0,1,2,3;4s,4p, 4d, 4f sub shell

n=1 n=2 n=3

(a) (b)
Fig - Various sub-shells for the electrons



5) When an electron jumps from one orbit to another orbit, the difference of energy (AE)
depends upon sub energy levels.

6) It explains the splitting of individual spectral lines of hydrogen & thus fine spectrum . It could
not predict the exact number of lines which are actually present in the fine spectrum.

Defects of Sommerfeld atomic model-

1) This model does not explain the behavior of system having more than one electron.

2) This model does not explain the Zeeman & Stark effect.



Zeeman Effect in Hydrogen

When an external magnetic field is applied, sharp spectral lines like the n=3— 2 transition of
hydrogen split into multiple closely spaced lines. First observed by Pieter Zeeman, this
splitting is attributed to the interaction between the magnetic field and the magnetic dipole
moment associated with the orbital angular momentum. In the absence of the magnetic field,
the hydrogen energies depend only upon the principal quantum number n, and the emissions

occur at a single wavelength.
- £
n=3 Magnetic
field off.

Magnetic
field on.

n=2

3

N—‘O—‘N

—'oo_og

Note that the transitions shown follow the selection rule which does not allow a change of
more than one unit in the quantum number m;.




Zeeman Interaction

An external magnetic field will exert a torque on a magnetic dipole and the magnetic
potential energy which results in

U©@)=—u-B
The magnetic dipole moment associated with the orbital angular momentum is given by

—€

Mo rpital = L
2m,
For a magnetic field in the z-direction this gives
e eh
U=——LB=m,—B
2m -~ 2m

Considering the quantization of angular momentum, this gives equally spaced energy
levels displaced from the zero field level by

h
AE = m [;_m B=m,u,B Uy = Bohr magneton

eh

Ly = =9.2740154x102*J / T =5.788382x107 eV /T

¢




This displacement of the energy levels gives the uniformly spaced multiplet splitting of
the spectral lines which is called the Zeeman effect.

The magnetic field also interacts with the electron spin magnetic moment, so it contributes
to the Zeeman effect in many cases. The electron spin had not been discovered at the time
of Zeeman's original experiments, so the cases where it contributed were considered to be
anomalous. The term "anomalous Zeeman effect” has persisted for the cases where spin
contributes. In general, both orbital and spin moments are involved, and the Zeeman
interaction takes the form

—- — — Magnetic
AE = 2&. (L + 2S)-B = g L“Brnj B interaction
m energy

The factor of two multiplying the electron spin angular momentum comes from the fact
that it is twice as effective in producing magnetic moment. This factor is called the spin g-
factor or gyromagnetic ratio. The evaluation of the scalar product between the angular
momenta and the magnetic field here is complicated by the fact that the S and L vectors
are both precessing around the magnetic field and are not in general in the same direction.
The persistent early spectroscopists worked out a way to calculate the effect of the
directions. The resulting geometric factor g; in the final expression above is called the

Lande g factor. It allowed them to express the resultant splittings of the spectral lines in
terms of the z-component of the total angular momentum, m;.
The above treatment of the Zeeman effect describes the phenomenon when the magnetic
fields are small enough that the orbital and spin angular momenta can be considered to be
coupled. For extremely strong magnetic fields this coupling is broken and another
approach must be taken. The strong field effect is called the Paschen-Back effect.




Hydrogen Zeeman Example

The Zeeman effect for the hydrogen atom offered experimental support for the quantization
of angular momentum which arose from the solution of the Schrodinger equation.

M
n=3 ) Magnetic
1 field off.
0
-1 Magnetic
B field on.
m, ‘
1( For a magnetic field of 1 Tesla
; Y ¥ [ AE =m,u,B=579x10"¢V
; /7 7

n=2




"Anomalous" Zeeman Effect

While the Zeeman effect in some atoms (e.g., hydrogen) showed the expected equally-
spaced triplet, in other atoms the magnetic field split the lines into four, six, or even more
lines and some triplets showed wider spacings than expected. These deviations were
labeled the "anomalous Zeeman effect” and were very puzzling to early researchers. The
explanation of these different patterns of splitting gave additional insight into the effects of
electron spin. With the inclusion of electron spin in the total angular momentum, the other
types of multiplets formed part of a consistent picture. So what has been historically called
the "anomalous" Zeeman effect is really the normal Zeeman effect when electron spin is
included.

"Anomalous" Zeeman effect

When electron spin is included, there is a greater
variety of splitting patterns.

This type of splitting is observed with Sodium doublet

hydrogen and the zinc singlet. .- -. Field off
.. Magnetic
field off. i
BN Wi
Magnetic
field on.
Zinc sharp triplet
This type of splitting is observed for Field off
spin O states since the spin does not
contribute to the angular momentum.
BN BINEERER -

"Normal" Zeeman effect




The Electron Spin g-factor

When the Zeeman effect was observed for hydrogen, the observed splitting was consistent
with an electron orbit magnetic moment given by

_ ey : eh _
]Jorbital— 2mL giving energy shifts of the form >m ml B = uBmI B

where the splittings followed the z-component of angular momentum and the selection rules
explained why you got a triplet of closely-spaced lines for the 3 -> 2 transition of hydrogen.
But when the effects of electron spin were discovered by Goudsmit and Uhlenbeck, they
found that the observed spectral features were matched by assigning to the electron spin a
magnetic moment

€

= S
u.spm 8 2’72

where g is approximately 2.

More precise experiments showed that the value was slightly greater than 2, and this fact
took on added importance when that departure from 2 was predicted by quantum
electrodynamics. In the experimental measurement of the Lamb shift, the value of g has been
determined to be

g =2.002319304386




