Marine Natural Products

Third year students

Prof. Dr. Seif Eldin Ayyad

Contents

- Introduction
- Advantages
- Limiting factors
- Drugs of marine origin
- Anti inflammatory drugs
- Anti virals
- Anti fungals
- Anti bacterials
- Anti parasitic agents
- Cardio vascular agents
- Conclusion
- References

INTRODUCTION

- The marine resources are nowadays widely studied because of numerous reasons.
- One of the reason is as the oceans cover more than 70% of the world surface and among 36 known living phyla, 34 of them are found in marine environments with more than 300000+ known species of fauna and flora.
- The attention of finding drug from sea had started from 1970s. For instance, about 300 patents on bioactive marine natural product have been issued between 1969 and 1999.
- So far, more than 10,000 compounds have been isolated from marine organism

Advantages

Marine natural products are used for treatment of several diseases like

- Anti inflammatory drugs
- Anti fungal drugs
- Anti cancer drugs
- Cardio vascular drugs
- •Anti viral drugs
- Anti helminthetic drugs
- Anti parasitic drugs
- Anti bacterial drugs .

Limiting factors for development of marine drugs

- Supply (sustainable, industrially feasible)
- Formulation (suitable for clinical use)
- Analytical method & preclinical PKs
- Pharmacogenetics (metabolic pathway)
- Therapeutic index
- Toxicities (Xeno)

Drugs of marine origin:

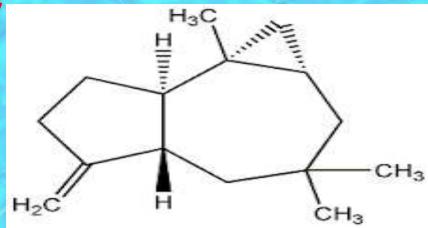
Compound Name	Source	Chemical Class	Company	Disease Area	Status	
Compounds targeting ion channels						
Ziconotide (Prialt TM)	Cone snail	Peptide	<u>Elan</u>	Chronic pain	FDA approved 2004, now marketed by Eisai in the EU	
GTS-21	Nemertine worm	Anabaseine-derivative	NIMH (U. Colorado)	Schizophrenia	Phase II (Academic) completed	
GTS-21	Nemertine worm	Anabaseine-derivative	<u>Comentis</u>	Alzheimer/ ADHD	Phase II	
Compounds targeting enzymes						
Protein kinase inhibitors						
Bryostatin-1	Bryozoan	Pol <mark>y</mark> ketide	NCI	Cancer	No current clinical trials. Potential interest in Alzheimers	
Proteasome inhibitor						
NPI-0052	Bacteria (Actinomycete)	Beta-lactone-gamma- lactam	<u>Nereus</u>	Cancer	Phase I	

Microtubule-interacting agents

Dolastatin-10	Sea slug	Peptide	NCI/Knoll	Cancer	No details shown on NCI site after 2004
ILX-651	Sea slug	Peptide	<u>Genzyme</u>	Cancer	Preclinical as 4/2008, oral formulation being developed
E7389(eribulin)	Sponge	Halichondrin B analog	<u>Eisai</u>	Cancer	Phase III for breast cancer USA & EU; Phase II (USA) NSCLC; Phase II (US/EU) prostate, Phase II (EU) sarcoma
NPI-2358	Fungi	Diketopiperazine	<u>Nereus</u>	Cancer	Phase II
TZT-1027(Soblidotin) aka YHI-501	Sea slug	Peptide	<u>Aska</u> Pharmaceuticals	Cancer	Phase I - III (possibly). Linked to monoclonals (Auristatin PE).
E-7974	Sponge	Tripeptide	<u>Eisai</u>	Cancer	Phase I

DNA and transcript	tion interactive age	nts			
Ecteinascidin- 743-Trabectedin (Yondelis®)	Sea squirt	Tetrahydroisoquinolone alkaloid	<u>PharmaMar</u> / Johnson & Johnson	Cancer	Approved by EMEA Sept 2007 Phase III ovarian cancer completed file FDA/EMEA Fall 08 December 2008 Phase II prostate cancer ongoing Phase II breast/lung cancer ongoing
PM00 104 (Zalypsis®)	Mollusc/Sponge	Synthetic alkaloid based on Jorumycin	<u>PharmaMar</u>	Cancer	Late Phase I development
VEGF interacting a	igent				
Plitidepsin (Aplidin®)	Sea squirt	Cyclic depsipeptide	<u>PharmaMar</u>	Cancer	Phase II multiple myeloma completed Phase II in T-NHL ongoing Combination studies ongoing

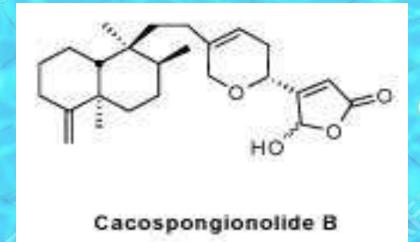
Lysosomotropic and	ErbB interacting	agent			
Kahalalide F	Sea slug/Algae	Cyclic depsipeptide	<u>PharmaMar</u>	Cancer	Phase II completed in solid tumors. Evaluated in severe psoriasis
PM02734 (Irvalec®)	Sea slug	Depsipeptide	<u>PharmaMar</u>	Cancer	Phase I ongoing Phase I/II in combination with Erlontinib in lung under implementation
Compounds with unl	known mechanis	m of action			
IPL-512602	Sponge	Steroid	Inflazyme/ Orexo pharmaceuticals	Inflammation/ Asthma	No further information available. Probably discontinued
Compounds targeting	g GPCRs			22	
Pseudopterosin A-methyl ether (TMO)	Soft Coral	Diterpene glycoside	Terosin Group Inc./Univ. of CA	Wound Healing	Phase II

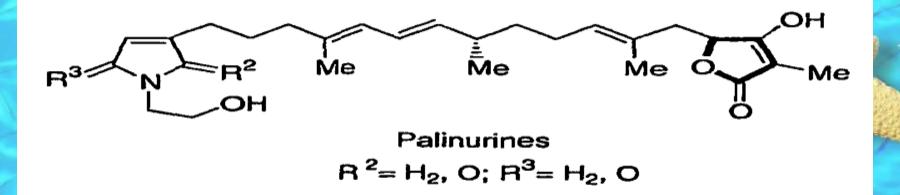

Anti-inflammatory

- Africanene,
- Cacospongiolide B,
- Palinurine A and B.

Africanene

- Sesquiterpene africanene, isolated from the soft coral Sinularia leptoclados
- It resulted in a more potent reduction of paw volume than that produced by 100 mg/kg body weight of ibuprofen, in carrageenan-induced rat


edema assay

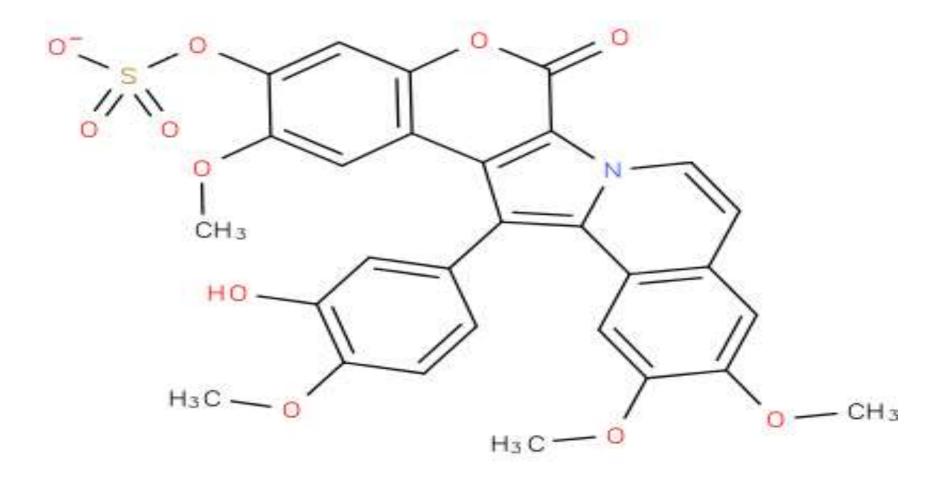

Cacospongionolide B

- A novel sesterterpene inhibitor of human synovial phospholipase A2 isolated from the sponge *Fasciospongia cavernosa*
- It irreversibly inhibited both secretory PLA2 in vitro and group II secretory PLA2 in vivo .

Palinurine A & B

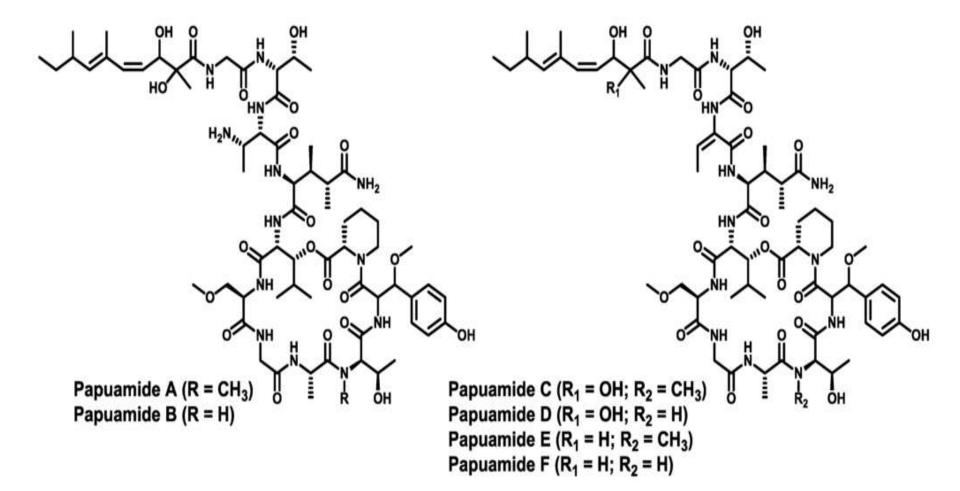
- Isolated from the marine sponge Ircinia echinata.
- Palinurin inhibited TXB₂ & Oxide radicals.
- Palinurine A and B were relatively ineffective inhibitors of both TXB₂ and Oxide radicals

Anti-virals


- Lamellarin α-20-sulfate
- Papuamides A–D
- Polycitone A
- Glycosaminoglycan
- Sulfated β-galactan

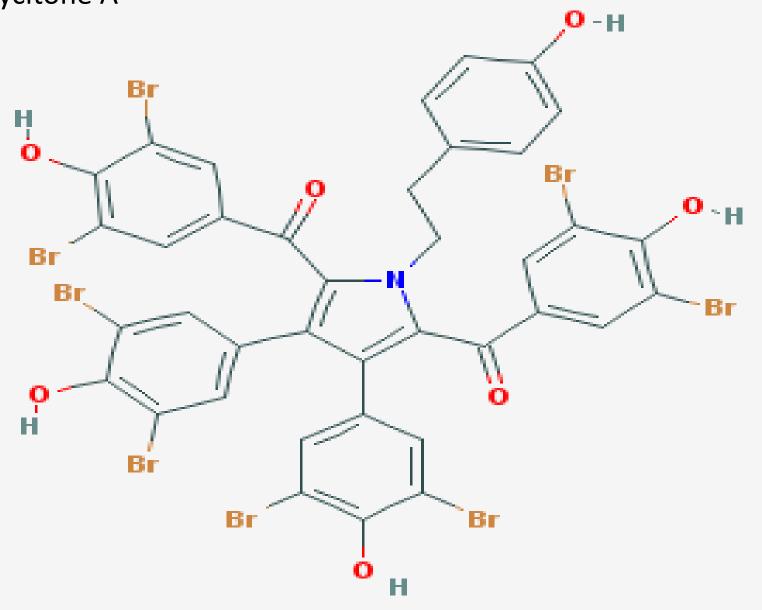
Lamellarin α-20-sulfate

- Alkaloid lamellarin α 20-sulfate in an unidentified ascidian showed selective *in vitro* inhibition of HIV-1 integrase.
- Lamellarins form a group of more than 30 poly aromatic pyrrole alkaloids isolated from diverse marine organisms, mainly ascidians and sponges.

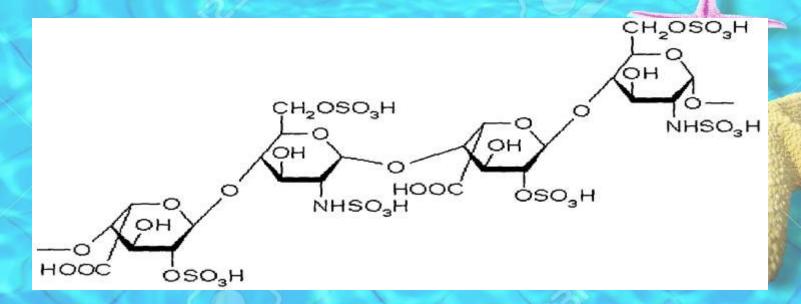

Lamellarin α -20-sulfate

Papuamides A - D

- Papuamides A, B, C & D were isolated from the sponges *Theonella mirabilis* & *Theonella swinhoei* .
- Papuamides A & B inhibited the infection of human T-lymphoblastoid cells by HIV-1 in vitro.


Papuamides A - D

Polycitone A


- Polycitone A isolated from the ascidian Polyctor sp., is a potent inhibitor of the reverse transcriptase of HIV & both C and B retroviruses, as well as a general inhibitor of cellular DNA polymerases
- As polycitone A is a general inhibitor of DNA polymerases it cannot serve as an anti-HIV drug but structural modifications of polycitone A could lead towards the rational design of new derivatives with anti-HIV reverse transcriptase activity

Polycitone A

Glucosaminoglycan

Synthesis of sulfated derivatives of a glycosaminoglycan isolated from the marine bacterium *Pseudomonas sp.* & act against two strains of influenza virus types A & but not B .

Sulfated β-galactan

- Introduction of sulfate groups into polysaccharides containing L-glutamic acid resulted in antiviral activity against influenza virus type A, but not against type B, this activity was similar to that of ribavirin.
- Sulfated β-galactan from the marine clam *Meretrix petechialis* inhibited CD4 HeLa cells from forming syncytia
- It was interpreted as probably the result of a "direct interaction of the polysaccharide with the HIV binding site at the membrane protein receptor CD4".

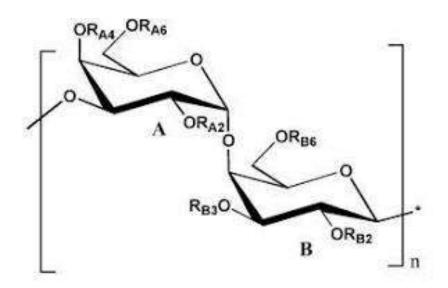
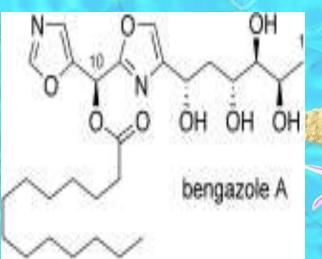
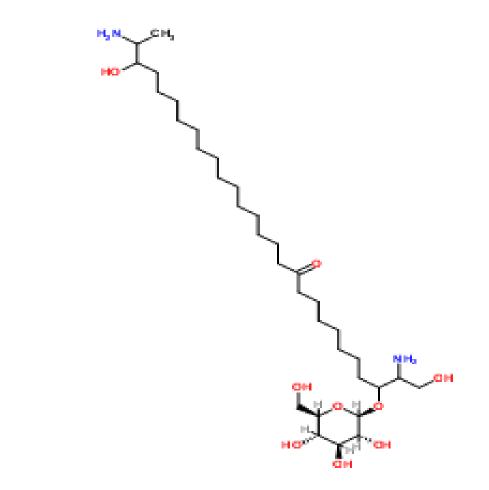


Figure 1- Schematic and global representation of sulfated galactans from red seaweeds. B unit is in D configuration. R_{A2}: H, SO₃⁻; R_{A4}: H, SO₃⁻; Pyruvic acid (cyclic ketal with 0₆); R_{A6}: H, CH₃, SO₃⁻; Pyruvic acid (cyclic ketal with 0₄), R_{B2}: H, CH₃, SO₃⁻; R_{B3}: H, R_{A6}: H, SO₃⁻.

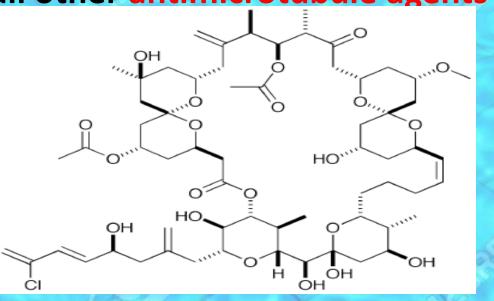

Anti-fungals

- Bengazole, bengamide
- Oceanapiside
- Spongistatin I
- Tanikolide
- Theopederins F–J

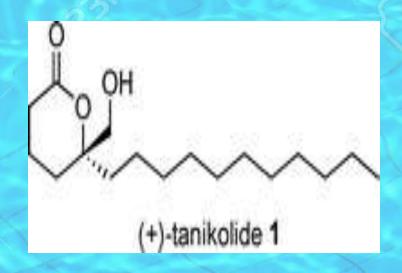
Bengazole & Bengamide


- The bengazole derivatives & a new bengamide obtained from the sponge *Pachastrissa sp*.
- The bengazole derivatives were observed to be active against Candida albicans .

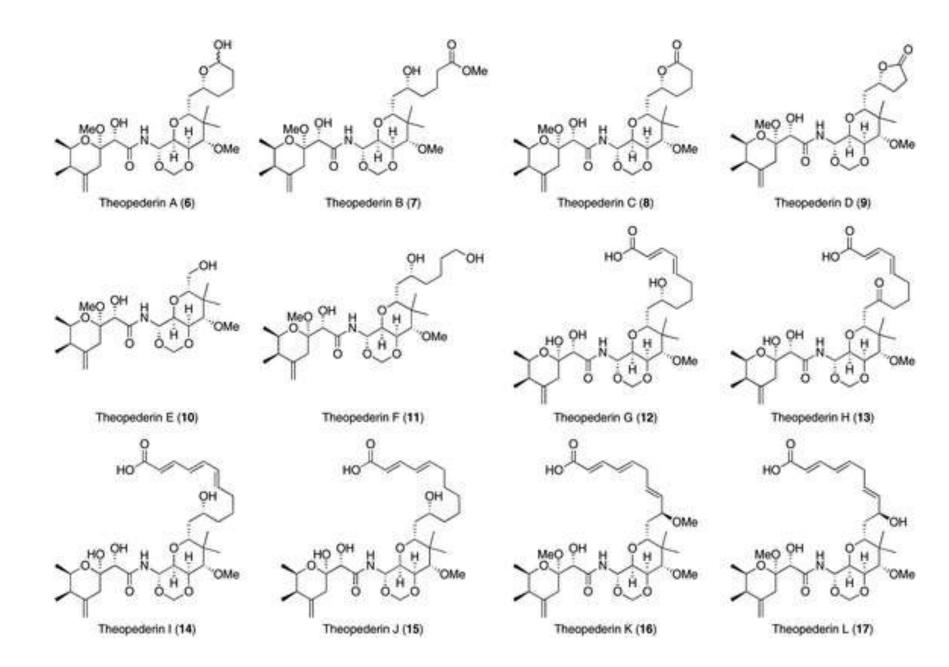
Oceanapiside


- Oceanapiside, from the sponge Oceanapia phillipensis, demonstrated antifungal activity against the fluconazole-resistant yeast Candida glabrata.
- Oceanapiside inhibit fungal cell growth by oxidases . ex: Oceanapiside A an inhibitor of sphingolipid biosynthesis.

Oceanapiside



- Spongistatin isolated from the sponge Hyrtios erecta demonstrated potent microtubule-severing activity
- Mechanism of action of was significantly differerent from all other antimicrotubule agents.


Tanikolide

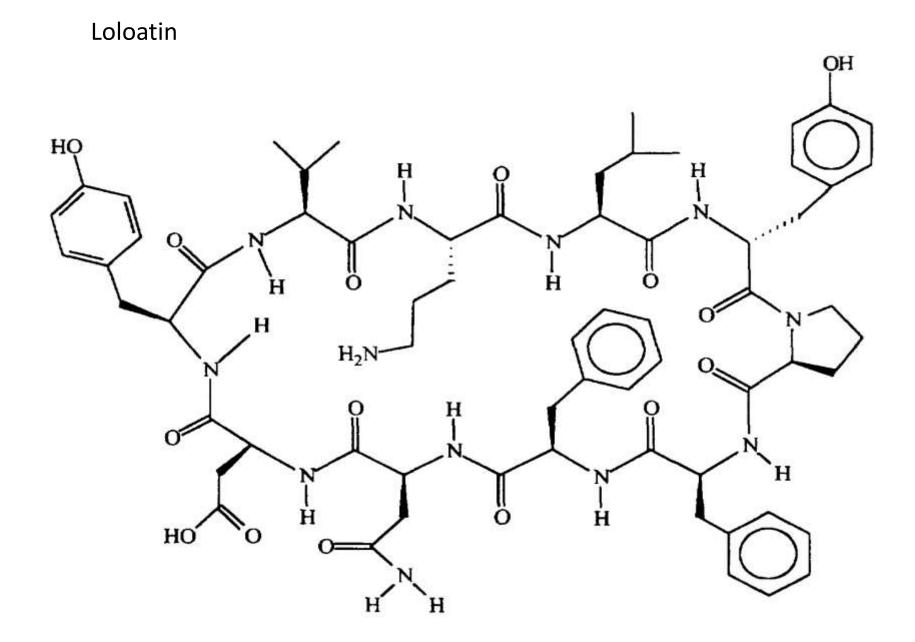
- Tanikolide was isolated from the marine cyanobacterium *Lyngbia majuscula*.
- Tanikolide targets through reverse chemical genetic and proteomic approaches, which has been target based screening for SRIT2 inhibitors.

Theopederins F - J

- Theopederins F–J from the sponge Theonella swinhoei
- Theopederin-F was particularly effective against
 Saccharomyces cerevisiae.

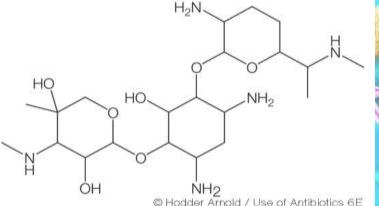


Anti-bacterials

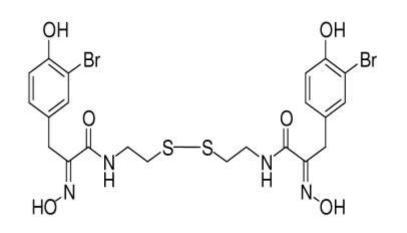

- Loloatins A–D
- Myticin
- Psammaplin A

U

Loloatins A–D

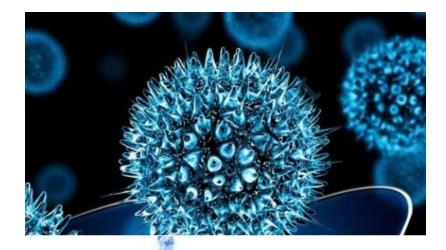

- Cyclic decapeptides isolated from a marine bacterium
- Exhibited *in vitro* antimicrobial activity against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci & penicillinresistant Streptococcus pneumoniae.

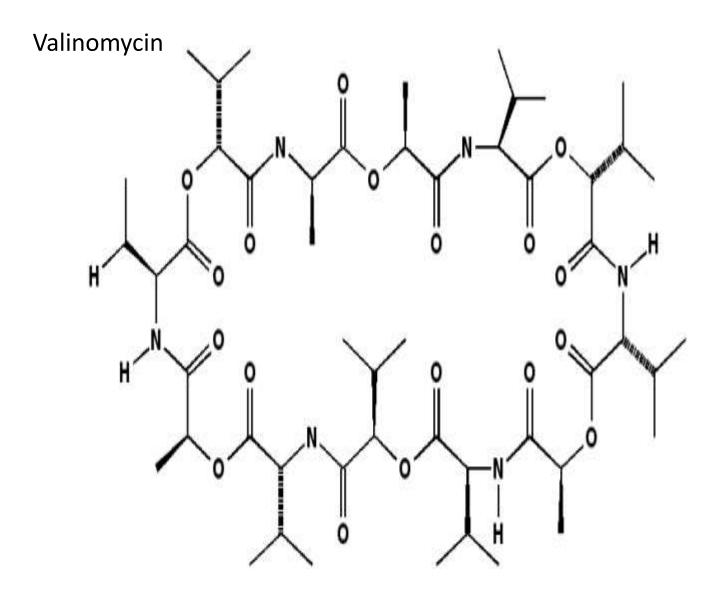
Myticin


- Isolated from hemocytes & plasma of the mussel Mytilus galloprovincialis
- Myticins A & B had marked activity against the Gram-positive strains Micrococcus luteus, Bacillus megaterium & Enterococcus viridans, other Grampositive, Gram-negative bacteria & fungi were

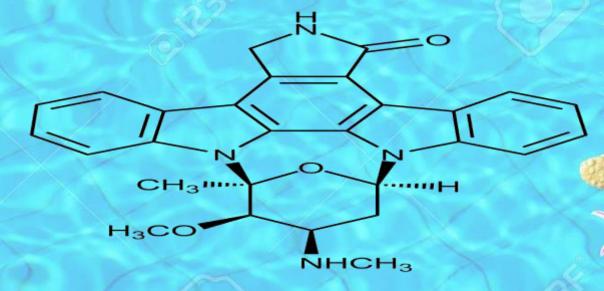
unaffected.

Psammaplin A


A bromotyrosine derivative from the sponge
 Psammaplysilla sp. possessed antibacterial activity
 against methicillin-resistant Gram-positive
 Staphylococcus aureus.


Antiparasitic agents

- Valinomycin
- Staurosporine


Valinomycin

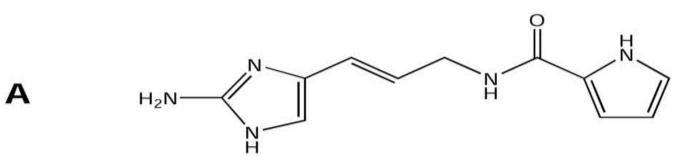
- It was a Dodecadepsi peptide antibiotic.
- It was obtained from the cells of several streptomyces strains, among which s.
 tsusimaensis and s.fulvissimus.
- It was recently reported to be the most potent agent against severe acute respiratory syndrome corona virus.

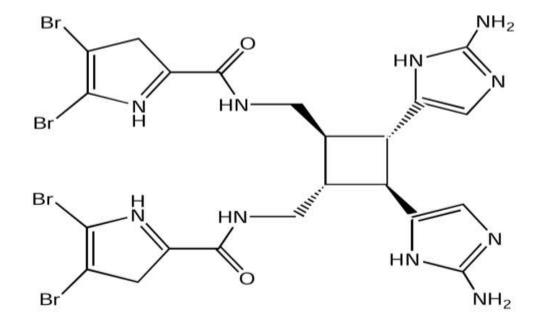
Starosporine

- It is a natural product originally isolated in 1977 from the bacterium streptomyces staurosporeus.
- It was discovered to have bioloical activities ranging from anti fungal to anti hyper tensive.

Cardiovascular compounds

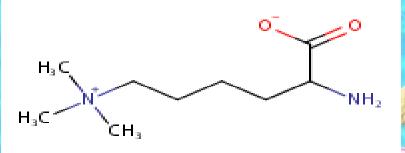
- Anthopleurins.
- Laminine.
- Spongosine



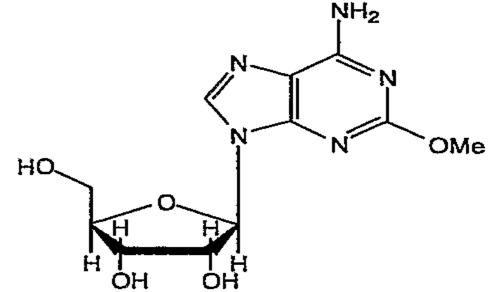

Anthopleurins

- These are a group of peptides obtaines from "coelenterates". Anthopleura xanthogrammica gives type A & type B.
- Anthopleura elegantissima gives type C.
- Anthopleurins AP- A shows strong positive ionotropic action and also produces cardiotonic effect in consious dag.

Anthopleurins

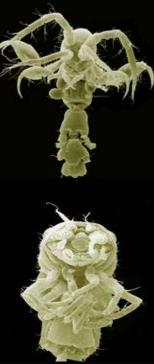


В


Laminine

- Laminine is obtained from the marine algae, Laminaria angustata.
- Laminaria angustata gives basic amino acid compound with hypotensive effects.

Spongosine


- Chemically it is a nucleoside, methoxy derivative of adenosine. It is found in the extract of carrabean sponge crypotethia crypta.
- It reduces both the rate & force of contraction of heart.

The available data demonstrates that: "The marine ecosystem is not only productive to discover novel entities but it is also a tool to identify new cellular targets for therapeutic intervention"

REFERENCES

- D.S. Bhakuni, Central Drug Research Institute, Lucknow, India. D.S. Rawat Department of Chemistry, University of Delhi, Delhi, India. Bioactive Marine Natural Products.
- 2. Narsinh I.Thakur. Archana. N & Werner E.G. Miller; Marine natural products in drug discovery.
- Wen-Chi Wei , Ping-Jyun Sung , Chang-Yih Duh , Bo-Wei Chen , Jyh-Horng Sheu , and Ning-Sun Yang , Marine drugs; Anti inflammatory activity of natural products; ISSN 1660-339 N.
- EL-Amraoui, B.J.F Biard, M.J.U riz, S.Rafai & A.Fassouane 2010. Antifungal & anti bacterial activity. Journal mycologic medicale.
- Mayer, A.M.S , A.D.Rodriguez; R.G.S Berlinck & M.T.Hamann .
 2009.Marine compounds with antibacterial, anti inflammatory, anti protozoal, antiviral , cardiovascular agents. Biochima et biophysica acta 1790 : 283-308.

Thank You...!!