

Damietta University Faculty of science Zoology Department

The effect of nano particles on the environment and copper NPs as example

By

Yusuf Adel Yusuf Marof Supervisor

Dr. Shimaa M. kteeba

Contents:

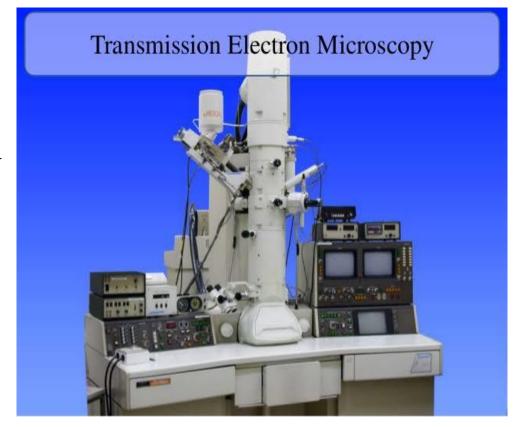
- 1.introduction.
 - 1.1. Definition of nanoparticles
 - 1.2. Importance and uses of nanoparticle
- 2. Characterization of nanoparticles.
- 3. Exposure and mechanism of nanoparticles to human body, terrestrial ecologies, aquatic life
- 4.copper nanoparticles.
 - 4.1.Bioactivities of copper-based nanoparticles.
 - 4.1.1.importance and toxicity issue of copper NPs.
 - 4.2.Possible mechanisms of antimicrobial action.

Introduction

Definition of nanoparticles:

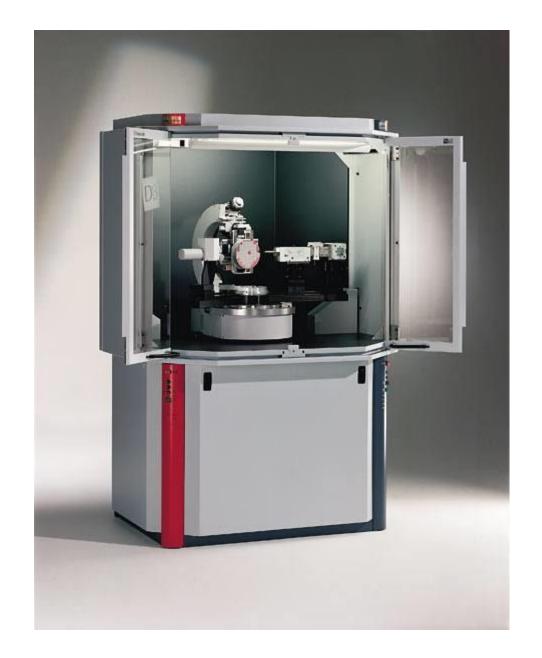
Nanoparticles are defined as a set of substances where at least one dimension is less than approximately 100 nanometers.

Importance and uses of nanoparticle:


the nanotechnology consumer products inventory has grown from 212 products in 2006 to 1,317 products in 2011, nearly a 521% increase in 5 years.

- The U.S. National Science Foundation is estimating that nanotechnology will have a \$1 trillion effect on the global market and will employ over 7 million workers by 2015
- In the pharmaceutical field include improving drugs, proteins, genes, and vaccine delivery systems.
- In manufacturing and industrial the nanoparticles uses, and applications have been growing at a very rapid rate
- In Agricultural and food industries offers many innovations to enhance the quality of the plants

Characterization of nanoparticles


Transmission electron microscopy:

- Manual or automatic techniques are used for particle size analysis.
- usually based on the use of a marking moved along the particle.

X-ray diffraction:

As it is a primary method for characterization of the crystal structure, crystallite, size, and stain, and have been widely used in NPs research

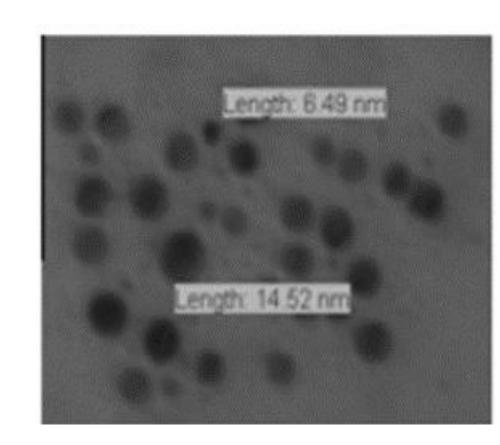
Exposure and mechanism of nanoparticles to human body , terrestrial ecologies, aquatic life

On human body:

- 1. Penetration through skin nodes
- 2. Intake by respiratory system via inhalation
- 3. Intake by digestive system via ingestion

On Terrestrial Ecologies:

NPs are taken up and adsorbed to plant surfaces through a plant's nano or micrometerscale openings.


On Aquatic Life:

Possible mechanisms through which NPs are toxic to fish may involve endocytosis pathways, diffusional pathways, mucus pathways, direct toxicity to gills and intestines, etc.

copper nanoparticles

Characterization of copper nanoparticles:

• TEM images confirmed that copper nanoparticles are approximately spherical in shape.

Bioactivities of copper-based nanoparticles

Copper is one of the useful nutrients required for normal functioning of human body such as:

- Brain development and maintenance brain health
- The heath of skin and connective tissues
- Wound healing
- Function of heart and blood vessels

Antimicrobial activity:

- antibacterial
- antiviral
- antiparasitic

Toxicity issues:

studies the effect of copper nanoparticles on dorsal root ganglion (DRG) of rat.

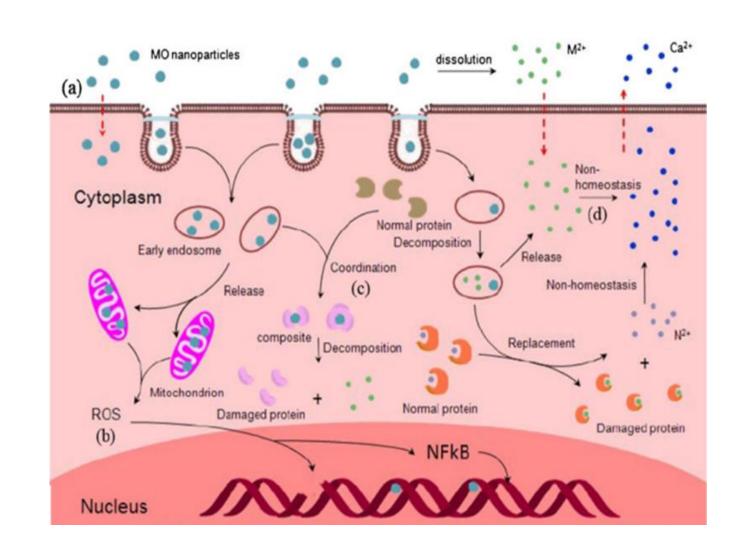
Exposure concentrations (10–100 µM) and sizes (40, 60, and 80 nm) for 24 h result cell death

• In liver:

High concentration cause hepatic injuries, inflammation and fibrosis

• In spleen:

Decrease of lymphocytes and splenic fibrosis


• In lungs:

Inflammation, collagen deposition and fibrosis

Possible mechanisms of antimicrobial action

copper nanoparticles after penetrating the bacteria:

- inactivate their enzymes, generating hydrogen peroxide
- DNA molecules and disturb the helical structure
- Some nanoparticles may enter cells via endocytosis
- directly interact with oxidative organelles such as mitochondria
- Production of (ROS) that can induce DNA strand, breaks and affect gene expression

